970 resultados para Weaning mechanical ventilation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. The literature indicated that Cu rich Cu-Cr and Cu-Fe alloys have been thoroughly investigated. A number of commercial alloys have been developed and these are used for a variety of applications requiring combinations of high-strength, high-conductivity and resistance to softening. Little evidence was found in the literature that the Cu rich corner of the Cu-Fe-Cr system had previously been investigated for the purpose of developing high-strength, high-conductivity copper alloys resistant to softening. The aim of these present investigations was to explore the possibility that new alloys could be developed that combined the properties of both sets of alloys, ie large precipitation hardening response combined with the ability to stabilise cold worked microstructures to high temperatures while at the same maintain high electrical conductivity. To assess the feasibility of this goal the following alloys were chosen for investigation: Cu-0.7wt%Cr-0.3wt%Fe, Cu-0.7wt%Cr-0.8wt%Fe, Cu-0.7wt%Cr-2.0wt%Fe. This paper reports on the mechanical property investigation which indicated that the Cu-0.7wt%Cr-0.3wt%Fe, and Cu-0.7wt%Cr-2.0wt%Fe alloys were worthy of further investigation. (C) 2001 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Involvement of nerve tissue may contribute to the persistence of pain following a whiplash injury. This study aimed to investigate responses to the brachial plexus provocation test (BPPT) in 156 subjects with chronic whiplash associated disorder (WAD) with and without associated arm pain and 95 asymptomatic control subjects. The range of elbow extension (ROM) and visual analogue scale (VAS) pain scores were measured. Subjects with chronic WAD demonstrated significantly less ROM and higher VAS scores with the BPPT than the asymptomatic subjects (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix spalling or crushing is one of the important mechanisms of fiber-matrix interaction of fiber reinforced cementitious composites (FRCC). The fiber pullout mechanisms have been extensively studied for an aligned fiber but matrix failure is rarely investigated since it is thought not to be a major affect. However, for an inclined fiber, the matrix failure should not be neglected. Due to the complex process of matrix spalling, experimental investigation and analytical study of this mechanism are rarely found in literature. In this paper, it is assumed that the load transfer is concentrated within the short length of the inclined fiber from the exit point towards anchored end and follows the exponential law. The Mindlin formulation is employed to calculate the 3D stress field. The simulation gives much information about this field. The 3D approximation of the stress state around an inclined fiber helps to qualitatively understand the mechanism of matrix failure. Finally, a spalling criterion is proposed by which matrix spalling occurs only when the stress in a certain volume, rather than the stress at a small point, exceeds the material strength. This implies some local stress redistribution after first yield. The stress redistribution results in more energy input and higher load bearing capacity of the matrix. In accordance with this hypothesis, the evolution of matrix spalling is demonstrated. The accurate prediction of matrix spalling needs the careful determination of the parameters in this model. This is the work of further study. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is currently unclear whether it is the need to maintain metabolic efficiency, the need to keep skeletal loading below critical force levels, or simple mechanical factors that drive the walk-to-run (W R) and run-to-walk (R-W) transitions in human gait. Eighteen adults (9 males and 9 females) locomoted on an instrumented treadmill using their preferred gait. Each completed 2 ascending (W-R) and 2 descending (R-W) series of trials under three levels of loading (0%, 15% and 30% body weight). For each trial, participants locomoted for 60 s at each of 9 different speeds -4 speeds both above and below their preferred transition speed (PTS) plus their PTS. Evidence was sought for critical levels of key kinetic (maximum vertical force, impulse, first peak force, time to first peak force and maximum loading rate), energetic (oxygen consumption, transport cost) and mechanical variables (limb lengths, strength) predictive of the gait transition. Analyses suggested the kinetic variables of time to first peak force and loading rate as the most likely determinants of the W-R and R-W transitions. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To evaluate the effect of periparturient disease accompanied by vulval discharge, and weaning-to-mating intervals, on sow fertility and litter size. Design Reproductive data were collected and analysed from 19 Hungarian swine herds over a 4 year period. Conception rates, farrowing rates and litter sizes of sows with periparturient disease accompanied by vulval discharge were used to evaluate the relationship between duration of vulval discharge and subsequent fertility and litter size. The possibility of interactions between weaning-to-mating intervals and duration of vulval discharges was investigated to determine if there was any effect on subsequent fertility and litter size. Results and conclusions Both parity 1 and parity 2 to 8 sows having had periparturient disease accompanied by vulval discharge in excess of 6 days duration had significantly (P < 0.001) lower subsequent fertility (conception, farrowing and adjusted farrowing rates) compared with sows of similar parity where the duration of vulval discharge was < 4 or 4 to 6 days. There was no difference in fertility rates between sows, in both parity categories, with vulval discharge for < 4 days compared with 4 to 6 days. A duration of vulval discharge in excess of 6 days in parity 1 sows significantly reduced litter size (total born and live-born) in subsequent farrowings, but not in parity 2 to 8 sows. There was no interaction between the duration of vulval discharge and post-weaning to mating intervals. However sows with weaning to mating intervals between 7 and 10 days had smaller (P < 0.001) subsequent litter sizes compared with 3 to 6 or 11 to 14 day intervals. It was concluded that the duration of vulval discharge in excess of 6 days was an indication of a severe persistent endometritis adversely affecting fertility of sows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ultra-estrutura e a composição química da madeira, bem como suas propriedades físicas e mecânicas, variam significativamente entre espécies, entre árvores de uma mesma espécie e, mesmo, entre diferentes partes de uma mesma árvore. Com este trabalho objetivou-se o estudo dos parâmetros de retratibilidade e de densidade básica da madeira Eucalyptus saligna, com idade de 16 anos, proveniente de talhões experimentais da EMBRAPA Florestas, de Colombo, Paraná. As amostras foram retiradas à altura do DAP de quatro posições eqüidistantes a partir da medula em direção à periferia, correspondendo a 0, 33, 66 e 100%, com dimensões nominais de 1,0 x 2,0 x 3,0 cm, sendo a última dimensão no sentido longitudinal. Elas foram mantidas em câmara fechada com ventilação, próximo de soluções salinas supersaturadas, com o objetivo de proporcionar diferentes condições de umidade relativa. Uma vez atingidas as distintas condições de umidade de equilíbrio, as amostras foram secas em estufa a 105 ºC e obtidos os dados de retratibilidade e densidade básica da madeira nas posições mencionadas. Constataram-se valores de contração volumétrica mais baixos na região medular, apresentando um acréscimo para as demais posições. Comportamento semelhante foi observado para os coeficientes das contrações lineares nas direções tangencial e radial. O fator anisotrópico foi consideravelmente mais elevado na região medular, decrescendo substancialmente em direção ao alburno. A densidade básica não mostrou sinais efetivos de estabilidade, apesar de mostrar tendência de aumento em direção à periferia do tronco.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O estudo da higroscopicidade é indispensável para o entendimento da trabalhabilidade, estabilidade dimensional, resistência mecânica e durabilidade natural da madeira. Neste trabalho objetivou-se a avaliação do teor de equilíbrio higroscópico para diversas condições de umidade relativa do ar, bem como da retratibilidade linear e volumétrica e da densidade básica da madeira de Eucalyptus saligna Sm. A madeira utilizada foi proveniente de árvores com 16 anos de idade, procedentes de talhões experimentais da EMBRAPA Florestas de Colombo, Paraná. Amostras com dimensões de 1,0x2,0x3,0 cm, sendo a última na direção longitudinal, foram colocadas em uma câmara fechada, sob ventilação, próximas de recipientes com soluções salinas supersaturadas, a fim de atingir determinada condição preestabelecida de teor de equilíbrio higroscópico. Após o equilíbrio da umidade da madeira nas distintas condições de umidade relativa, as amostras foram secas em estufa, para posterior avaliação. Os dados relativos à umidade de equilíbrio ajustaram-se muito bem às condições de umidade relativa adotadas neste estudo, tendo sido possível estimar com grande precisão o teor de equilíbrio higroscópico, para a faixa de aproximadamente 20 até 100% de umidade relativa. A madeira em estudo apresentou dados de retratibilidade bastante elevados, se comparados aos de outras da mesma faixa de densidade. Apesar dos elevados coeficientes de contração, o fator anisotrópico ou relação T/R mostrou-se próximo daquele encontrado na grande maioria das madeiras comerciais brasileiras. Verificaram-se ainda coeficientes de contrações mais suaves nos teores de umidade abaixo de 17%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites of styrene–butadiene–styrene (SBS) block copolymer with multiwall carbon nanotubes were processed by solution casting to investigate the influence of filler content, the different ratios of styrene/butadiene in the copolymer and the architecture of the SBS matrix on the electrical, mechanical and electro-mechanical properties of the composites. It was found that filler content and elastomer matrix architecture influence the percolation threshold and consequently the overall composite electrical conductivity. Themechanical properties aremainly affected by the styrene and filler content. Hopping between nearest fillers is proposed as the main mechanism for the composite conduction. The variation of the electrical resistivity is linear with the deformation. This fact, together with the gauge factor values in the range of 2–18, results in appropriate composites to be used as (large) deformation sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites of styrene–butadiene–styrene (SBS) block copolymer with multiwall carbon nanotubes were processed by solution casting to investigate the influence of filler content, the different ratios of styrene/butadiene in the copolymer and the architecture of the SBS matrix on the electrical, mechanical and electro-mechanical properties of the composites. It was found that filler content and elastomer matrix architecture influence the percolation threshold and consequently the overall composite electrical conductivity. The mechanical properties are mainly affected by the styrene and filler content. Hopping between nearest fillers is proposed as the main mechanism for the composite conduction. The variation of the electrical resistivity is linear with the deformation. This fact, together with the gauge factor values in the range of 2–18, results in appropriate composites to be used as (large) deformation sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is focused on the establishment of relationships between the injection moulding processing conditions, the applied thermomechanical environment (TME) and the tensile properties of talc-filled polypropylene,adopting a new extended concept of thermomechanical indices (TMI). In this approach, TMI are calculated from computational simulations of the moulding process that characterise the TME during processing, which are then related to the mechanical properties of the mouldings. In this study, this concept is extended to both the filling and the packing phases, with new TMI defined related to the morphology developed during these phases. A design of experiments approach based on Taguchi orthogonal arrays was adopted to vary the injection moulding parameters (injection flow rate, injection temperature, mould wall temperature and holding pressure), and thus, the TME. Results from analysis of variance for injection-moulded tensile specimens have shown that among the considered processing conditions, the flow rate is the most significant parameter for the Young’s modulus; the flow rate and melt temperature are the most significant for the strain at break; and the holding pressure and flow rate are the most significant for the stress at yield. The yield stress and Young’s modulus were found to be governed mostly by the thermostress index (TSI, related to the orientation of the skin layer), whilst the strain at break depends on both the TSI and the cooling index (CI, associated to the crystallinity degree of the core region). The proposed TMI approach provides predictive capabilities of the mechanical response of injection-moulded components, which is a valuable input during their design stage.