1000 resultados para Voie [beta]-adrénergique
Resumo:
Although it is well established that benzimidazole (BZMs) compounds exert their therapeutic effects through binding to helminth beta-tubulin and thus disrupting microtubule-based processes in the parasites, the precise location of the benzimidazole-binding site on the beta-tubulin molecule has yet to be determined. In the present study, we have used previous experimental data as cues to help identify this site. Firstly, benzimidazole resistance has been correlated with a phenylalanine-to-tyrosine substitution at position 200 of Haemonchus contortus beta-tubulin isotype-I. Secondly, site-directed mutagenesis studies, using fungi, have shown that other residues in this region of the protein can influence the interaction of benzimidazoles with beta-tubulin. However, the atomic structure of the alphabeta-tubulin dimer shows that residue 200 and the other implicated residues are buried within the protein. This poses the question: how might benzimidazoles interact with these apparently inaccessible residues? In the present study, we present a mechanism by which those residues generally believed to interact with benzimidazoles may become accessible to the drugs. Furthermore, by docking albendazole-sulphoxide into a modelled H. contortus beta-tubulin molecule we offer a structural explanation for how the mutation conferring benzimidazole resistance in nematodes may act, as well as a possible explanation for the species-specificity of benzimidazole anthelmintics.
Resumo:
We found that engagement of beta 2 integrins on human neutrophils increased the levels of GTP-bound Rap1 and Rap2. Also, the activation of Rap1 was blocked by PP1, SU6656, LY294002, GF109203X, or BAPTA-AM, which indicates that the downstream signaling events in Rap1 activation involve Src tyrosine kinases, phosphoinositide 3-kinase, protein kinase C, and release of calcium. Surprisingly, the integrin-induced activation of Rap2 was not regulated by any of the signaling pathways mentioned above. However, we identified nitric oxide as the signaling molecule involved in beta 2 integrin-induced activation of Rap1 and Rap2. This was illustrated by the fact that engagement of beta 2 integrins increased the production of nitrite, a stable end-product of nitric oxide. Furthermore, pretreatment of neutrophils with N-monomethyl-L-arginine, or 1400W, which are inhibitors of inducible nitric-oxide synthase, blocked integrin-induced activation of Rap1 and Rap2. Similarly, Rp-8pCPT-cGMPS, an inhibitor of cGMP-dependent serine/threonine kinases, also blunted the integrin-induced activation of Rap GTPases. Also nitric oxide production and its downstream activation of cGMP-dependent serine/threonine kinases were essential for proper neutrophil adhesion by beta 2 integrins. Thus, we made the novel findings that beta 2 integrin engagement on human neutrophils triggers production of nitric oxide and its downstream signaling is essential for activation of Rap GTPases and neutrophil adhesion.
Resumo:
A versatile approach for the enantioselective synthesis of functionalised beta-hydroxy N-acetylcysteamine thiol esters has been developed which allows the facile incorporation of isotopic labels. It has been shown that a remarkable reversal of selectivity occurs in the titanium mediated aldol reaction of the acyloxazolidone intermediate using either (S)- or (R)-tert-butyldimethylsilyloxybutanal. The aldol products are valuable intermediates in the synthesis of 4-hydroxy-6-substituted gamma-lactones.
Resumo:
beta-Defensins are antimicrobial peptides that contribute to the innate immune responses of eukaryotes. At least three defensins, human beta-defensins 1, 2, and 3 (HBD-1, -2, and -3), are produced by epithelial cells lining the respiratory tract and are active toward Gram-positive (HBD-3) and Gram-negative (HBD-1, -2, and -3) bacteria. It has been postulated that the antimicrobial activity of defensins is compromised by changes in airway surface liquid composition in lungs of patients with cystic fibrosis (CF), therefore contributing to the bacterial colonization of the lung by Pseudomonas and other bacteria in CF. In this report we demonstrate that HBD-2 and HBD-3 are susceptible to degradation and inactivation by the cysteine proteases cathepsins B, L, and S. In addition, we show that all three cathepsins are present and active in CF bronchoalveolar lavage. Incubation of HBD-2 and -3 with CF bronchoalveolar lavage leads to their degradation, which can be completely (HBD-2) or partially (HBD-3) inhibited by a cathepsin inhibitor. These results suggest that beta-defensins are susceptible to degradation and inactivation by host proteases, which may be important in the regulation of beta-defensin activity. In chronic lung diseases associated with infection, overexpression of cathepsins may lead to increased degradation of HBD-2 and -3, thereby favoring bacterial infection and colonization.
Resumo:
Sedatives and tranquillisers are frequently used to reduce stress during the transportation of food producing animals. The most widely used classes of sedatives include the butyrophenone azaperone, the phenothiazines acepromazine, propionylpromazine, chlorpromazine and the beta-blocker, carazolol. For regulatory control purposes, tolerances for azaperone and carazolol have been set by the European Union as 100 and 25 mug kg(-1), respectively. Furthermore, the use of the phenothiazines is prohibited and therefore has a zero tolerance. A method for the detection of residues of five tranquillisers and one beta-blocker using a single ELISA plate has been developed. Kidney samples (2.5 g) were extracted with dichloromethane and applied to a competitive enzyme immunoassay using three polyclonal antibodies raised in rabbits against azaperol, propionylpromazine and carazolol conjugates. In sample matrix, the azaperol antibody cross-reacted 28.0% with azaperone and the propionylpromazine antibody cross-reacted 24.9% with acepromazine and 11.7% with chlorpromazine. In the ELISA, the detection capabilities of the six sedatives, azaperol, azaperone, carazolol, acepromazine, chlorpromazine, and propionylpromazine are 5, 15, 5, 5, 20 and 5 mug kg(-1), respectively. The proposed method is a sensitive and rapid multi-residue technique that offers a cost effective alternative to current published procedures, without any concession on the ability to detect sedative misuse.
Resumo:
Our previous studies have shown that overexpression of beta1,4-galactosyltransferase1 (beta1,4GT1) leads to increased apoptosis induced by cycloheximide (CHX) in SMMC-7721 human hepatocarcinoma cells. However, the role of beta1,4GT1 in apoptosis remains unclear. Here we demonstrated that cell surface beta1,4GT1 inhibited the autophosphorylation of epidermal growth factor receptor (EGFR) especially at Try 1068. The phosphorylation of protein kinase B (PKB/Akt) and extracellular signal-regulated protein kinase1/2 (ERK1/2), which are downstream molecules of EGFR, were also reduced in cell surface beta1,4GT1-overexpressing cells. Furthermore, the translocations of Bad and Bax that are regulated by PKB/Akt and ERK1/2 were also increased in these cells. As a result, the release of cytochrome c from mitochondria to cytosol was increased and caspase-3 was activated. In contrast, RNAi-mediated knockdown of beta1,4GT1 increased the autophosphorylation of EGFR. These results demonstrated that cell surface beta1,4GT1 may negatively regulate cell survival possibly through inhibiting and modulating EGFR signaling pathway.
Resumo:
The stimulatory effects of the synthetic beta-(1-->6)-branched beta-(1-->3) glucohexaose and its analogues containing an alpha-(1-->3)-linked bond on the mouse spleen were studied for elucidation of the mechanism of their antitumor activity, and their stimulatory effects were compared with Lentinan. The mouse spleen's weight was increased after the intraperitoneal (i.p.) injection of the oligosaccharides compared with the saline group. In addition, routinely hematoxylin and eosin (HE)-stained spleen sections showed that the injection also changed the spleen's histopathology. RNA samples were isolated from splenocytes of oligosaccharides, Lentinan or saline-injected mice. Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot showed that the administration of the oligosaccharides or Lentinan enhanced mouse spleen mRNA production of TNF-alpha but not IL-2. The injection also enhanced Concanavalin A (Con A)-induced mouse splenocytes proliferation, but the in vitro administration of the oligosaccharides did not have the proliferation-enhancing effect. Taken together, these results suggest that the synthetic beta-(1-->6)-branched beta-(1-->3) glucohexaose and its analogues containing an alpha-(1-->3)-linked bond have similar stimulatory effects as Lentinan. Additionally, they may exert their antitumor effects through the induction of splenocytes mediated immune responses.