988 resultados para Voice over


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A discussion has been provided for the comments raised by the discusser (Clausen, 2015)1] on the article recently published by the authors (Chakraborty and Kumar, 2015). The effect of exponent alpha for values of GSI approximately smaller than 30 becomes more critical. On the other hand, for greater values of GSI, the results obtained by the authors earlier remain primarily independent of alpha and can be easily used. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic aerosols play a crucial role in our environment, climate, and health. Assessment of spatial and temporal variation in anthropogenic aerosols is essential to determine their impact. Aerosols are of natural and anthropogenic origin and together constitute a composite aerosol system. Information about either component needs elimination of the other from the composite aerosol system. In the present work we estimated the anthropogenic aerosol fraction (AF) over the Indian region following two different approaches and inter-compared the estimates. We espouse multi-satellite data analysis and model simulations (using the CHIMERE Chemical transport model) to derive natural aerosol distribution, which was subsequently used to estimate AF over the Indian subcontinent. These two approaches are significantly different from each other. Natural aerosol satellite-derived information was extracted in terms of optical depth while model simulations yielded mass concentration. Anthropogenic aerosol fraction distribution was studied over two periods in 2008: premonsoon (March-May) and winter (November-February) in regard to the known distinct seasonality in aerosol loading and type over the Indian region. Although both techniques have derived the same property, considerable differences were noted in temporal and spatial distribution. Satellite retrieval of AF showed maximum values during the pre-monsoon and summer months while lowest values were observed in winter. On the other hand, model simulations showed the highest concentration of AF in winter and the lowest during pre-monsoon and summer months. Both techniques provided an annual average AF of comparable magnitude (similar to 0.43 +/- 0.06 from the satellite and similar to 0.48 +/- 0.19 from the model). For winter months the model-estimated AF was similar to 0.62 +/- 0.09, significantly higher than that (0.39 +/- 0.05) estimated from the satellite, while during pre-monsoon months satellite-estimated AF was similar to 0.46 +/- 0.06 and the model simulation estimation similar to 0.53 +/- 0.14. Preliminary results from this work indicate that model-simulated results are nearer to the actual variation as compared to satellite estimation in view of general seasonal variation in aerosol concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we submit our comment on the following recently published papers by Kalidas Das: (1) ``Influence of chemical reaction and viscous dissipation on MHD mixed convection flow,'' Journal of Mechanical Science and Technology 28 (5) (2014) 1881-1885; and (2) ``Cu-water nanofluid flow and heat transfer over a shrinking sheet,'' Journal of Mechanical Science and Technology 28 (12) (2014) 5089-5094. The authors attempt to present the similarity solutions in both papers. We comment that the similarity transformations considered in Refs. 1, 2] are incorrect. Thus, the results presented by Kalidas Das lead to invalid conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional magnetic recording 2-D (TDMR) is a promising technology for next generation magnetic storage systems based on a systems-level framework involving sophisticated signal processing at the core. The TDMR channel suffers from severe jitter noise along with electronic noise that needs to be mitigated during signal detection and recovery. Recently, we developed noise prediction-based techniques coupled with advanced signal detectors to work with these systems. However, it is important to understand the role of harmful patterns that can be avoided during the encoding process. In this paper, we investigate the Voronoi-based media model to study the harmful patterns over multitrack shingled recording systems. Through realistic quasi-micromagnetic simulation studies, we identify 2-D data patterns that contribute to high media noise. We look into the generic Voronoi model and present our analysis on multitrack detection with constrained coded data. We show that the 2-D constraints imposed on input patterns result in an order of magnitude improvement in the bit-error rate for the TDMR systems. The use of constrained codes can reduce the complexity of 2-D intersymbol interference (ISI) signal detection, since the lesser 2-D ISI span can be accommodated at the cost of a nominal code rate loss. However, a system must be designed carefully so that the rate loss incurred by a 2-D constraint does not offset the detector performance gain due to more distinguishable readback signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helmke et al. have recently given a formula for the number of reachable pairs of matrices over a finite field. We give a new and elementary proof of the same formula by solving the equivalent problem of determining the number of so called zero kernel pairs over a finite field. We show that the problem is, equivalent to certain other enumeration problems and outline a connection with some recent results of Guo and Yang on the natural density of rectangular unimodular matrices over F-qx]. We also propose a new conjecture on the density of unimodular matrix polynomials. (C) 2016 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-availability of high-spatial-resolution thermal data from satellites on a consistent basis led to the development of different models for sharpening coarse-spatial-resolution thermal data. Thermal sharpening models that are based on the relationship between land-surface temperature (LST) and a vegetation index (VI) such as the normalized difference vegetation index (NDVI) or fraction vegetation cover (FVC) have gained much attention due to their simplicity, physical basis, and operational capability. However, there are hardly any studies in the literature examining comprehensively various VIs apart from NDVI and FVC, which may be better suited for thermal sharpening over agricultural and natural landscapes. The aim of this study is to compare the relative performance of five different VIs, namely NDVI, FVC, the normalized difference water index (NDWI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI), for thermal sharpening using the DisTrad thermal sharpening model over agricultural and natural landscapes in India. Multi-temporal LST data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors obtained over two different agro-climatic grids in India were disaggregated from 960 m to 120 m spatial resolution. The sharpened LST was compared with the reference LST estimated from the Landsat data at 120 m spatial resolution. In addition to this, MODIS LST was disaggregated from 960 m to 480 m and compared with ground measurements at five sites in India. It was found that NDVI and FVC performed better only under wet conditions, whereas under drier conditions, the performance of NDWI was superior to other indices and produced accurate results. SAVI and MSAVI always produced poorer results compared with NDVI/FVC and NDWI for wet and dry cases, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that all the vector bundles of the title can be obtained by holomorphic induction from representations of a certain parabolic group on finite-dimensional inner product spaces. The representations, and the induced bundles, have composition series with irreducible factors. We write down an equivariant constant coefficient differential operator that intertwines the bundle with the direct sum of its irreducible factors. As an application, we show that in the case of the closed unit ball in C-n all homogeneous n-tuples of Cowen-Douglas operators are similar to direct sums of certain basic n-tuples. (c) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the flame spread over thermally thin combustibles in an atmosphere, if the atmosphere cannot emit and absorb the thermal radiation (e.g. for atmosphere Of O-2-N-2), the conductive heat transfer from the flame to the fuel surface dominates the flame spread at lower ambient atmosphere. As the ambient pressure increases, the flame spread rate increases, and the radiant heat transfer from the flame to the fuel surface gradually becomes the dominant driving force for the flame spread. In contrast, if the atmosphere is able to emit and absorb the thermal radiation (e.g. for atmosphere Of O-2-CO2), at lower pressure, the heat transfer from flame to the fuel surface is enhanced by the radiation reabsorption of the atmosphere at the leading edge of the flame, and both conduction and thermal radiation play important roles in the mechanism of flame spread. With the increase in ambient pressure, the oxygen diffuses more quickly from ambient atmosphere into the flame, the chemical reaction in the flame is enhanced, and the flame spread rate increases. When the ambient pressure is greater than a critical value, the thermal radiation from the flame to the solid surface is hampered by the radiation reabsorption of ambient atmosphere with the further increase in ambient pressure. As a result, with the increase in ambient pressure, the flame spread rate decreases and the heat conduction gradually dominates the flame spread over the fuel surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the key technologies to evolve in the displays market in recent years is liquid crystal over silicon (LCOS) microdisplays. Traditional LCOS devices and applications such as rear projection televisions, have been based on intensity modulation electro-optical effects, however, recent developments have shown that multi-level phase modulation from these devices is extremely sought after for applications such as holographic projectors, optical correlators and adaptive optics. Here, we propose alternative device geometry based on the flexoelectric-optic effect in a chiral nematic liquid crystal. This device is capable of delivering a multilevel phase shift at response times less than 100 microsec which has been verified by phase shift interferometry using an LCOS test device. The flexoelectric on silicon device, due to its remarkable characteristics, enables the next generation of holographic devices to be realized.