880 resultados para Variational-inequalities
Resumo:
The method of statistical mechanics is applied to the study of the one-dimensional model of turbulence proposed in an earlier paper. The closure problem is solved by the variational approach which has been developed for the three-dimensional case, yielding two integral equations for two unknown functions. By solving the two integral equations, the Kolmogorov k−5/3 law is derived and the (one-dimensional) Kolmogorov constant Ko is evaluated, obtaining Ko=0.55, which is in good agreement with the result of numerical experiments on one-dimensional turbulence.
Resumo:
An attempt is made to determine the form of F(x), the dimensionless function of universal nature which occurs in the energy spectrum for the universal equilibrium range of fully developed turbulence, by the method of statistical mechanics without introducing any parameter of semiempirical nature. Then, the validity of the variational approach to the closure problem of turbulence theory is tested by applying it to the study of the universal equilbrium range of turbulence.
Resumo:
In this paper, we mainly deal with cigenvalue problems of non-self-adjoint operator. To begin with, the generalized Rayleigh variational principle, the idea of which was due to Morse and Feshbach, is examined in detail and proved more strictly in mathematics. Then, other three equivalent formulations of it are presented. While applying them to approximate calculation we find the condition under which the above variational method can be identified as the same with Galerkin's one. After that we illustrate the generalized variational principle by considering the hydrodynamic stability of plane Poiseuille flow and Bénard convection. Finally, the Rayleigh quotient method is extended to the cases of non-self-adjoint matrix in order to determine its strong eigenvalne in linear algebra.
Resumo:
A literatura atribui a confiança e a desconfiança no Congresso Nacional ao resultado da avaliação do desempenho dos parlamentares. Pondera que, desde que associada ao crescimento da escolarização, da renda e da adesão à democracia, a desconfiança nas instituições democráticas pode refletir maior exigência de cidadãos críticos, ou democratas insatisfeitos, advindos de melhoria social. Nesta perspectiva, a reprovação é positiva, contanto que fenômeno específico, e potencialmente propulsora do engajamento cívico dos cidadãos, fundamental para a democracia nas chaves representativa e participativa. Na busca de uma cidadania crítica à brasileira, a pesquisa que origina o artigo analisou as segmentações de escolaridade e de renda da avaliação de desempenho parlamentar do Datafolha entre 2005 e 2008, período em que os cidadãos tiveram grande oferta de informação (no caso, negativa)sobre o Congresso Nacional e que concentrou dois dos três piores índices de reprovação da história da pesquisa, associados a eventos do escândalo do mensalão. Acabou por evidenciar que, além dos cidadãos críticos, nossas desigualdades parecem ter forjado outros dois tipos de cidadania, muitas vezes relevados pela literatura: a crente e a oculta, potencialmente prejudiciais ao regime, pela associação à baixa escolaridade e à baixa renda, pelo reforço à exclusão e pela própria invisibilidade. Preteridos na academia, não podem sê-lo pela "Casa de todos os brasileiros" em um País que vislumbra alcançar indicadores sociais próximos às democracias centrais na próxima década.
Resumo:
针对激光辐照热障涂层材料的平面应变问题,提出热障涂层热弹性分析的基本方程,对定常温度场给出级数形式解析解,并用最小余能原理和变分法分析了结构的热弹性应力场,研究了最大应力和界面应力的分布特征,并就一些物理参数的影响进行了讨论.结果表明,热障涂层的主要破坏因素为表面拉伸应力,界面应力相对较小,但在自由边界有集中现象,剥落应力大于剪切应力,是导致涂层破坏的重要原因.涂层厚度增加会改变厚度方向上的应力分布,界面应力向中心集中.
Resumo:
In May 2010, Brazil joined the roll of nations with a National Broadband Plan. The Decree nº 7,175/2010 had implemented a program that aimed to offer 30 million permanent broadband accesses until 2014 and established its main goals, such as accelerating economic and social development, promoting digital inclusion, reducing social and regional inequalities, promoting a generation of employment and income, and expanding electronic government services. However, the broadband access in Brazil is limited, expensive, and centralized in the main urban centres. Despite the fast growth in the past years due to mobile internet access, the market is still concentrated in the local incumbent operators that currently provide mobile services, landline services and Paid-TV services, resulting in a high level of market verticalization. The following dissertation investigates the constraint of broadband access development, the dynamics, the actors, and the factors that have delayed the roll-out of broadband services in Brazil. The study also promotes reflections about the challenge posed by the media, by costumers associations and by public opinion as critical observers of the policy making process. This research examines on the political influence towards regulation to determine the way policy will benefit interest groups. Many interviews have been conducted in order to understand the forces which have been acting in the telecommunications in Brazil after privatization, in 1998. This study aims to provide a better understanding of telecommunications regulatory process in Brazil, in order to help the country finding an adequate policy which can lead to the implementation of a broadband roll-out. The universal broadband access is the only way to benefit the whole society in Brazil with a satisfactory level of education and create more jobs and economic development regarding the plenty use of Information and Communications Technology (ICT).
Resumo:
IARD 8th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields - Galileo Galilei Inst Theoret Phys (GGI), Florence, ITALY - MAY 29-JUN 01, 2012. Edited by:Horowitz, LP
Resumo:
对于采用贴有压电陶瓷片作为作动元件的智能结构,在进行自适应控制时,往往要分析压电陶瓷片所引起的结构中的应力、应变和位移。对于带有压电陶瓷片梁的力学分析,文献中大多采用Euler-Bernoulli模型,即不考虑梁中的剪力,且假定梁沿厚度方向满足直法线假定。考虑到压电陶瓷片对梁的作用主要是通过粘贴层以剪力的形式传递到梁上,梁截面上的剪应力和剪应变一般很大,其影响不能忽略。本文采用Hellinger-Reissner二类变分广义余能原理,导出考虑梁截面上剪应力和剪应变影响的方程式,其中采用吉尔法求解非齐次常微分方程组。并将求得的解与相同条件的有限元解进行比较。结果证明该方法很有效。本文还对二类广义变分法进行了一般的讨论,发现,在使用二类广义变分法求解时,随着应力和位移所取项数的增加,结果有时反而变坏。并对二类广义变分法的使用提出了一些建议。
Resumo:
This thesis is mainly concerned with the application of groups of transformations to differential equations and in particular with the connection between the group structure of a given equation and the existence of exact solutions and conservation laws. In this respect the Lie-Bäcklund groups of tangent transformations, particular cases of which are the Lie tangent and the Lie point groups, are extensively used.
In Chapter I we first review the classical results of Lie, Bäcklund and Bianchi as well as the more recent ones due mainly to Ovsjannikov. We then concentrate on the Lie-Bäcklund groups (or more precisely on the corresponding Lie-Bäcklund operators), as introduced by Ibragimov and Anderson, and prove some lemmas about them which are useful for the following chapters. Finally we introduce the concept of a conditionally admissible operator (as opposed to an admissible one) and show how this can be used to generate exact solutions.
In Chapter II we establish the group nature of all separable solutions and conserved quantities in classical mechanics by analyzing the group structure of the Hamilton-Jacobi equation. It is shown that consideration of only Lie point groups is insufficient. For this purpose a special type of Lie-Bäcklund groups, those equivalent to Lie tangent groups, is used. It is also shown how these generalized groups induce Lie point groups on Hamilton's equations. The generalization of the above results to any first order equation, where the dependent variable does not appear explicitly, is obvious. In the second part of this chapter we investigate admissible operators (or equivalently constants of motion) of the Hamilton-Jacobi equation with polynornial dependence on the momenta. The form of the most general constant of motion linear, quadratic and cubic in the momenta is explicitly found. Emphasis is given to the quadratic case, where the particular case of a fixed (say zero) energy state is also considered; it is shown that in the latter case additional symmetries may appear. Finally, some potentials of physical interest admitting higher symmetries are considered. These include potentials due to two centers and limiting cases thereof. The most general two-center potential admitting a quadratic constant of motion is obtained, as well as the corresponding invariant. Also some new cubic invariants are found.
In Chapter III we first establish the group nature of all separable solutions of any linear, homogeneous equation. We then concentrate on the Schrodinger equation and look for an algorithm which generates a quantum invariant from a classical one. The problem of an isomorphism between functions in classical observables and quantum observables is studied concretely and constructively. For functions at most quadratic in the momenta an isomorphism is possible which agrees with Weyl' s transform and which takes invariants into invariants. It is not possible to extend the isomorphism indefinitely. The requirement that an invariant goes into an invariant may necessitate variants of Weyl' s transform. This is illustrated for the case of cubic invariants. Finally, the case of a specific value of energy is considered; in this case Weyl's transform does not yield an isomorphism even for the quadratic case. However, for this case a correspondence mapping a classical invariant to a quantum orie is explicitly found.
Chapters IV and V are concerned with the general group structure of evolution equations. In Chapter IV we establish a one to one correspondence between admissible Lie-Bäcklund operators of evolution equations (derivable from a variational principle) and conservation laws of these equations. This correspondence takes the form of a simple algorithm.
In Chapter V we first establish the group nature of all Bäcklund transformations (BT) by proving that any solution generated by a BT is invariant under the action of some conditionally admissible operator. We then use an algorithm based on invariance criteria to rederive many known BT and to derive some new ones. Finally, we propose a generalization of BT which, among other advantages, clarifies the connection between the wave-train solution and a BT in the sense that, a BT may be thought of as a variation of parameters of some. special case of the wave-train solution (usually the solitary wave one). Some open problems are indicated.
Most of the material of Chapters II and III is contained in [I], [II], [III] and [IV] and the first part of Chapter V in [V].
Resumo:
In Part I a class of linear boundary value problems is considered which is a simple model of boundary layer theory. The effect of zeros and singularities of the coefficients of the equations at the point where the boundary layer occurs is considered. The usual boundary layer techniques are still applicable in some cases and are used to derive uniform asymptotic expansions. In other cases it is shown that the inner and outer expansions do not overlap due to the presence of a turning point outside the boundary layer. The region near the turning point is described by a two-variable expansion. In these cases a related initial value problem is solved and then used to show formally that for the boundary value problem either a solution exists, except for a discrete set of eigenvalues, whose asymptotic behaviour is found, or the solution is non-unique. A proof is given of the validity of the two-variable expansion; in a special case this proof also demonstrates the validity of the inner and outer expansions.
Nonlinear dispersive wave equations which are governed by variational principles are considered in Part II. It is shown that the averaged Lagrangian variational principle is in fact exact. This result is used to construct perturbation schemes to enable higher order terms in the equations for the slowly varying quantities to be calculated. A simple scheme applicable to linear or near-linear equations is first derived. The specific form of the first order correction terms is derived for several examples. The stability of constant solutions to these equations is considered and it is shown that the correction terms lead to the instability cut-off found by Benjamin. A general stability criterion is given which explicitly demonstrates the conditions under which this cut-off occurs. The corrected set of equations are nonlinear dispersive equations and their stationary solutions are investigated. A more sophisticated scheme is developed for fully nonlinear equations by using an extension of the Hamiltonian formalism recently introduced by Whitham. Finally the averaged Lagrangian technique is extended to treat slowly varying multiply-periodic solutions. The adiabatic invariants for a separable mechanical system are derived by this method.
Resumo:
The nonlinear partial differential equations for dispersive waves have special solutions representing uniform wavetrains. An expansion procedure is developed for slowly varying wavetrains, in which full nonlinearity is retained but in which the scale of the nonuniformity introduces a small parameter. The first order results agree with the results that Whitham obtained by averaging methods. The perturbation method provides a detailed description and deeper understanding, as well as a consistent development to higher approximations. This method for treating partial differential equations is analogous to the "multiple time scale" methods for ordinary differential equations in nonlinear vibration theory. It may also be regarded as a generalization of geometrical optics to nonlinear problems.
To apply the expansion method to the classical water wave problem, it is crucial to find an appropriate variational principle. It was found in the present investigation that a Lagrangian function equal to the pressure yields the full set of equations of motion for the problem. After this result is derived, the Lagrangian is compared with the more usual expression formed from kinetic minus potential energy. The water wave problem is then examined by means of the expansion procedure.
Resumo:
The problem of the finite-amplitude folding of an isolated, linearly viscous layer under compression and imbedded in a medium of lower viscosity is treated theoretically by using a variational method to derive finite difference equations which are solved on a digital computer. The problem depends on a single physical parameter, the ratio of the fold wavelength, L, to the "dominant wavelength" of the infinitesimal-amplitude treatment, L_d. Therefore, the natural range of physical parameters is covered by the computation of three folds, with L/L_d = 0, 1, and 4.6, up to a maximum dip of 90°.
Significant differences in fold shape are found among the three folds; folds with higher L/L_d have sharper crests. Folds with L/L_d = 0 and L/L_d = 1 become fan folds at high amplitude. A description of the shape in terms of a harmonic analysis of inclination as a function of arc length shows this systematic variation with L/L_d and is relatively insensitive to the initial shape of the layer. This method of shape description is proposed as a convenient way of measuring the shape of natural folds.
The infinitesimal-amplitude treatment does not predict fold-shape development satisfactorily beyond a limb-dip of 5°. A proposed extension of the treatment continues the wavelength-selection mechanism of the infinitesimal treatment up to a limb-dip of 15°; after this stage the wavelength-selection mechanism no longer operates and fold shape is mainly determined by L/L_d and limb-dip.
Strain-rates and finite strains in the medium are calculated f or all stages of the L/L_d = 1 and L/L_d = 4.6 folds. At limb-dips greater than 45° the planes of maximum flattening and maximum flattening rat e show the characteristic orientation and fanning of axial-plane cleavage.
Resumo:
Inspired by key experimental and analytical results regarding Shape Memory Alloys (SMAs), we propose a modelling framework to explore the interplay between martensitic phase transformations and plastic slip in polycrystalline materials, with an eye towards computational efficiency. The resulting framework uses a convexified potential for the internal energy density to capture the stored energy associated with transformation at the meso-scale, and introduces kinetic potentials to govern the evolution of transformation and plastic slip. The framework is novel in the way it treats plasticity on par with transformation.
We implement the framework in the setting of anti-plane shear, using a staggered implicit/explict update: we first use a Fast-Fourier Transform (FFT) solver based on an Augmented Lagrangian formulation to implicitly solve for the full-field displacements of a simulated polycrystal, then explicitly update the volume fraction of martensite and plastic slip using their respective stick-slip type kinetic laws. We observe that, even in this simple setting with an idealized material comprising four martensitic variants and four slip systems, the model recovers a rich variety of SMA type behaviors. We use this model to gain insight into the isothermal behavior of stress-stabilized martensite, looking at the effects of the relative plastic yield strength, the memory of deformation history under non-proportional loading, and several others.
We extend the framework to the generalized 3-D setting, for which the convexified potential is a lower bound on the actual internal energy, and show that the fully implicit discrete time formulation of the framework is governed by a variational principle for mechanical equilibrium. We further propose an extension of the method to finite deformations via an exponential mapping. We implement the generalized framework using an existing Optimal Transport Mesh-free (OTM) solver. We then model the $\alpha$--$\gamma$ and $\alpha$--$\varepsilon$ transformations in pure iron, with an initial attempt in the latter to account for twinning in the parent phase. We demonstrate the scalability of the framework to large scale computing by simulating Taylor impact experiments, observing nearly linear (ideal) speed-up through 256 MPI tasks. Finally, we present preliminary results of a simulated Split-Hopkinson Pressure Bar (SHPB) experiment using the $\alpha$--$\varepsilon$ model.
Resumo:
This thesis studies three classes of randomized numerical linear algebra algorithms, namely: (i) randomized matrix sparsification algorithms, (ii) low-rank approximation algorithms that use randomized unitary transformations, and (iii) low-rank approximation algorithms for positive-semidefinite (PSD) matrices.
Randomized matrix sparsification algorithms set randomly chosen entries of the input matrix to zero. When the approximant is substituted for the original matrix in computations, its sparsity allows one to employ faster sparsity-exploiting algorithms. This thesis contributes bounds on the approximation error of nonuniform randomized sparsification schemes, measured in the spectral norm and two NP-hard norms that are of interest in computational graph theory and subset selection applications.
Low-rank approximations based on randomized unitary transformations have several desirable properties: they have low communication costs, are amenable to parallel implementation, and exploit the existence of fast transform algorithms. This thesis investigates the tradeoff between the accuracy and cost of generating such approximations. State-of-the-art spectral and Frobenius-norm error bounds are provided.
The last class of algorithms considered are SPSD "sketching" algorithms. Such sketches can be computed faster than approximations based on projecting onto mixtures of the columns of the matrix. The performance of several such sketching schemes is empirically evaluated using a suite of canonical matrices drawn from machine learning and data analysis applications, and a framework is developed for establishing theoretical error bounds.
In addition to studying these algorithms, this thesis extends the Matrix Laplace Transform framework to derive Chernoff and Bernstein inequalities that apply to all the eigenvalues of certain classes of random matrices. These inequalities are used to investigate the behavior of the singular values of a matrix under random sampling, and to derive convergence rates for each individual eigenvalue of a sample covariance matrix.
Resumo:
We employ the variational method to study the optical guiding of an intense laser beam in a preformed plasma channel without using the weakly relativistic approximation. Apart from the dependence on the laser power and the nonlinear channel strength parameter, the beam focusing properties is shown also to be governed by the laser intensity. Relativistic channel-coupling focusing, arising from the coupling between relativistic self-focusing and linear channel focusing, can enhance relativistic self-focusing but its strength is weaker than that of linear channel focusing. (C) 2008 Elsevier B.V. All rights reserved.