959 resultados para Variational equations
Resumo:
In this work we study the computational complexity of a class of grid Monte Carlo algorithms for integral equations. The idea of the algorithms consists in an approximation of the integral equation by a system of algebraic equations. Then the Markov chain iterative Monte Carlo is used to solve the system. The assumption here is that the corresponding Neumann series for the iterative matrix does not necessarily converge or converges slowly. We use a special technique to accelerate the convergence. An estimate of the computational complexity of Monte Carlo algorithm using the considered approach is obtained. The estimate of the complexity is compared with the corresponding quantity for the complexity of the grid-free Monte Carlo algorithm. The conditions under which the class of grid Monte Carlo algorithms is more efficient are given.
Resumo:
In this paper, we initiate the study of a class of Putnam-type equation of the form x(n-1) = A(1)x(n) + A(2)x(n-1) + A(3)x(n-2)x(n-3) + A(4)/B(1)x(n)x(n-1) + B(2)x(n-2) + B(3)x(n-3) + B-4 n = 0, 1, 2,..., where A(1), A(2), A(3), A(4), B-1, B-2, B-3, B-4 are positive constants with A(1) + A(2) + A(3) + A(4) = B-1 + B-2 + B-3 + B-4, x(-3), x(-2), x(-1), x(0) are positive numbers. A sufficient condition is given for the global asymptotic stability of the equilibrium point c = 1 of such equations. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study the oscillating property of positive solutions and the global asymptotic stability of the unique equilibrium of the two rational difference equations [GRAPHICS] and [GRAPHICS] where a is a nonnegative constant. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we study the behavior of the positive solutions of the system of two difference equations [GRAPHICS] where p >= 1, r >= 1, s >= 1, A >= 0, and x(1-r), x(2-r),..., x(0), y(1-max) {p.s},..., y(0) are positive real numbers. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A finite-difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow-water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gasdynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearised problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. An extension to the two-dimensional equations with source terms, is included. The scheme is applied to a dam-break problem with cylindrical symmetry.