979 resultados para User Survey


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Channel-aware assignment of sub-channels to users in the downlink of an OFDMA system demands extensive feedback of channel state information (CSI) to the base station. Since the feedback bandwidth is often very scarce, schemes that limit feedback are necessary. We develop a novel, low feedback splitting-based algorithm for assigning each sub-channel to its best user, i.e., the user with the highest gain for that sub-channel among all users. The key idea behind the algorithm is that, at any time, each user contends for the sub-channel on which it has the largest channel gain among the unallocated sub-channels. Unlike other existing schemes, the algorithm explicitly handles multiple access control aspects associated with the feedback of CSI. A tractable asymptotic analysis of a system with a large number of users helps design the algorithm. It yields 50% to 65% throughput gains compared to an asymptotically optimal one-bit feedback scheme, when the number of users is as small as 10 or as large as 1000. The algorithm is fast and distributed, and scales with the number of users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constellation Constrained (CC) capacity regions of two-user Gaussian Multiple Access Channels (GMAC) have been recently reported, wherein an appropriate angle of rotation between the constellations of the two users is shown to enlarge the CC capacity region. We refer to such a scheme as the Constellation Rotation (CR) scheme. In this paper, we propose a novel scheme called the Constellation Power Allocation (CPA) scheme, wherein the instantaneous transmit power of the two users are varied by maintaining their average power constraints. We show that the CPA scheme offers CC sum capacities equal (at low SNR values) or close (at high SNR values) to those offered by the CR scheme with reduced decoding complexity for QAM constellations. We study the robustness of the CPA scheme for random phase offsets in the channel and unequal average power constraints for the two users. With random phase offsets in the channel, we show that the CC sum capacity offered by the CPA scheme is more than the CR scheme at high SNR values. With unequal average power constraints, we show that the CPA scheme provides maximum gain when the power levels are close, and the advantage diminishes with the increase in the power difference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With no Channel State Information (CSI) at the users, transmission over the two-user Gaussian Multiple Access Channel with fading and finite constellation at the input, will have high error rates due to multiple access interference (MAI). However, perfect CSI at the users is an unrealistic assumption in the wireless scenario, as it would involve extremely large feedback overheads. In this paper we propose a scheme which removes the adverse effect of MAI using only quantized knowledge of fade state at the transmitters such that the associated overhead is nominal. One of the users rotates its constellation relative to the other without varying the transmit power to adapt to the existing channel conditions, in order to meet certain predetermined minimum Euclidean distance requirement in the equivalent constellation at the destination. The optimal rotation scheme is described for the case when both the users use symmetric M-PSK constellations at the input, where M = 2(gimel), gimel being a positive integer. The strategy is illustrated by considering the example where both the users use QPSK signal sets at the input. The case when the users use PSK constellations of different sizes is also considered. It is shown that the proposed scheme has considerable better error performance compared to the conventional non-adaptive scheme, at the cost of a feedback overhead of just log log(2) (M-2/8 - M/4 + 2)] + 1 bits, for the M-PSK case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a Physical layer Network Coding (PNC) scheme for the K-user wireless Multiple Access Relay Channel, in which K source nodes want to transmit messages to a destination node D with the help of a relay node R. The proposed scheme involves (i) Phase 1 during which the source nodes alone transmit and (ii) Phase 2 during which the source nodes and the relay node transmit. At the end of Phase 1, the relay node decodes the messages of the source nodes and during Phase 2 transmits a many-to-one function of the decoded messages. To counter the error propagation from the relay node, we propose a novel decoder which takes into account the possibility of error events at R. It is shown that if certain parameters are chosen properly and if the network coding map used at R forms a Latin Hypercube, the proposed decoder offers the maximum diversity order of two. Also, it is shown that for a proper choice of the parameters, the proposed decoder admits fast decoding, with the same decoding complexity order as that of the reference scheme based on Complex Field Network Coding (CFNC). Simulation results indicate that the proposed PNC scheme offers a large gain over the CFNC scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For transmission over the two-user Gaussian Multiple Access Channel with fading and finite constellation at the inputs, we propose a scheme which uses only quantized knowledge of fade state at users with the feedback overhead being nominal. One of the users rotates its constellation without varying the transmit power to adapt to the existing channel conditions, in order to meet certain pre-determined minimum Euclidean distance requirement in the equivalent constellation at the destination. The optimal modulation scheme has been described for the case when both the users use symmetric M-PSK constellations at the input, where M = 2λ, λ being a positive integer. The strategy has been illustrated by considering examples where both the users use QPSK signal set at the input. It is shown that the proposed scheme has considerable better error performance compared to the conventional non-adaptive scheme, at the cost of a feedback overhead of just [log2 (M2/8 - M/4 + 2)] + 1 bits, for the M-PSK case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study of the environments of extended radio sources in the Australia Telescope Low-Brightness Survey (ATLBS). The radio sources were selected from the ATLBS Extended Source Sample, which is a well defined sample containing the most extended of radio sources in the ATLBS sky survey regions. The environments were analysed using 4-m Cerro-Tololo Inter-American Observatory Blanco telescope observations carried out for ATLBS fields in the Sloan Digital Sky Survey r(') band. We have estimated the properties of the environments using smoothed density maps derived from galaxy catalogues constructed using these optical imaging data. The angular distribution of galaxy density relative to the axes of the radio sources has been quantified by defining anisotropy parameters that are estimated using a new method presented here. Examining the anisotropy parameters for a subsample of extended double radio sources that includes all sources with pronounced asymmetry in lobe extents, we find good evidence for environmental anisotropy being the dominant cause for lobe asymmetry in that higher galaxy density occurs almost always on the side of the shorter lobe, and this validates the usefulness of the method proposed and adopted here. The environmental anisotropy parameters have been used to examine and compare the environments of Fanaroff-Riley Class I (FRI) and Fanaroff-Riley Class II (FRII) radio sources in two redshift regimes (z < 0.5 and z > 0.5). Wide-angle tail sources and head-tail sources lie in the most overdense environments. The head-tail source environments (for the HT sources in our sample) display dipolar anisotropy in that higher galaxy density appears to lie in the direction of the tails. Excluding the head-tail and wide-angle tail sources, subsamples of FRI and FRII sources from the ATLBS appear to lie in similar moderately overdense environments, with no evidence for redshift evolution in the regimes studied herein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents novel achievable schemes for the 2-user symmetric linear deterministic interference channel with limited-rate transmitter cooperation and perfect secrecy constraints at the receivers. The proposed achievable scheme consists of a combination of interference cancelation, relaying of the other user's data bits, time sharing, and transmission of random bits, depending on the rate of the cooperative link and the relative strengths of the signal and the interference. The results show, for example, that the proposed scheme achieves the same rate as the capacity without the secrecy constraints, in the initial part of the weak interference regime. Also, sharing random bits through the cooperative link can achieve a higher secrecy rate compared to sharing data bits, in the very high interference regime. The results highlight the importance of limited transmitter cooperation in facilitating secure communications over 2-user interference channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers linear precoding for the constant channel-coefficient K-user MIMO Gaussian interference channel (MIMO GIC) where each transmitter-i (Tx-i) requires the sending of d(i) independent complex symbols per channel use that take values from fixed finite constellations with uniform distribution to receiver-i (Rx-i) for i = 1, 2, ..., K. We define the maximum rate achieved by Tx-i using any linear precoder as the signal-to-noise ratio (SNR) tends to infinity when the interference channel coefficients are zero to be the constellation constrained saturation capacity (CCSC) for Tx-i. We derive a high-SNR approximation for the rate achieved by Tx-i when interference is treated as noise and this rate is given by the mutual information between Tx-i and Rx-i, denoted as I(X) under bar (i); (Y) under bar (i)]. A set of necessary and sufficient conditions on the precoders under which I(X) under bar (i); (Y) under bar (i)] tends to CCSC for Tx-i is derived. Interestingly, the precoders designed for interference alignment (IA) satisfy these necessary and sufficient conditions. Furthermore, we propose gradient-ascentbased algorithms to optimize the sum rate achieved by precoding with finite constellation inputs and treating interference as noise. A simulation study using the proposed algorithms for a three-user MIMO GIC with two antennas at each node with d(i) = 1 for all i and with BPSK and QPSK inputs shows more than 0.1-b/s/Hz gain in the ergodic sum rate over that yielded by precoders obtained from some known IA algorithms at moderate SNRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the renewed interest in vector-like fermion extensions of the Standard Model, we present here a study of multiple vector-like theories and their phenomenological implications. Our focus is mostly on minimal flavor conserving theories that couple the vector-like fermions to the SM gauge fields and mix only weakly with SM fermions so as to avoid flavor problems. We present calculations for precision electroweak and vector-like state decays, which are needed to investigate compatibility with currently known data. We investigate the impact of vector-like fermions on Higgs boson production and decay, including loop contributions, in a wide variety of vector-like extensions and their parameter spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clock synchronization in wireless sensor networks (WSNs) assures that sensor nodes have the same reference clock time. This is necessary not only for various WSN applications but also for many system level protocols for WSNs such as MAC protocols, and protocols for sleep scheduling of sensor nodes. Clock value of a node at a particular instant of time depends on its initial value and the frequency of the crystal oscillator used in the sensor node. The frequency of the crystal oscillator varies from node to node, and may also change over time depending upon many factors like temperature, humidity, etc. As a result, clock values of different sensor nodes diverge from each other and also from the real time clock, and hence, there is a requirement for clock synchronization in WSNs. Consequently, many clock synchronization protocols for WSNs have been proposed in the recent past. These protocols differ from each other considerably, and so, there is a need to understand them using a common platform. Towards this goal, this survey paper categorizes the features of clock synchronization protocols for WSNs into three types, viz, structural features, technical features, and global objective features. Each of these categories has different options to further segregate the features for better understanding. The features of clock synchronization protocols that have been used in this survey include all the features which have been used in existing surveys as well as new features such as how the clock value is propagated, when the clock value is propagated, and when the physical clock is updated, which are required for better understanding of the clock synchronization protocols in WSNs in a systematic way. This paper also gives a brief description of a few basic clock synchronization protocols for WSNs, and shows how these protocols fit into the above classification criteria. In addition, the recent clock synchronization protocols for WSNs, which are based on the above basic clock synchronization protocols, are also given alongside the corresponding basic clock synchronization protocols. Indeed, the proposed model for characterizing the clock synchronization protocols in WSNs can be used not only for analyzing the existing protocols but also for designing new clock synchronization protocols. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper lists some references that could in some way be relevant in the context of the real-time computational simulation of biological organs, the research area being defined in a very broad sense. This paper contains 198 references.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper derives outer bounds for the 2-user symmetric linear deterministic interference channel (SLDIC) with limited-rate transmitter cooperation and perfect secrecy constraints at the receivers. Five outer bounds are derived, under different assumptions of providing side information to receivers and partitioning the encoded message/output depending on the relative strength of the signal and the interference. The usefulness of these outer bounds is shown by comparing the bounds with the inner bound on the achievable secrecy rate derived by the authors in a previous work. Also, the outer bounds help to establish that sharing random bits through the cooperative link can achieve the optimal rate in the very high interference regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The K-user multiple input multiple output (MIMO) Gaussian symmetric interference channel where each transmitter has M antennas and each receiver has N antennas is studied from a generalized degrees of freedom (GDOF) perspective. An inner bound on the GDOF is derived using a combination of techniques such as treating interference as noise, zero forcing (ZF) at the receivers, interference alignment (IA), and extending the Han-Kobayashi (HK) scheme to K users, as a function of the number of antennas and the log INR/log SNR level. Several interesting conclusions are drawn from the derived bounds. It is shown that when K > N/M + 1, a combination of the HK and IA schemes performs the best among the schemes considered. When N/M < K <= N/M + 1, the HK-scheme outperforms other schemes and is found to be GDOF optimal in many cases. In addition, when the SNR and INR are at the same level, ZF-receiving and the HK-scheme have the same GDOF performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper derives outer bounds on the sum rate of the K-user MIMO Gaussian interference channel (GIC). Three outer bounds are derived, under different assumptions of cooperation and providing side information to receivers. The novelty in the derivation lies in the careful selection of side information, which results in the cancellation of the negative differential entropy terms containing signal components, leading to a tractable outer bound. The overall outer bound is obtained by taking the minimum of the three outer bounds. The derived bounds are simplified for the MIMO Gaussian symmetric IC to obtain outer bounds on the generalized degrees of freedom (GDOF). The relative performance of the bounds yields insight into the performance limits of multiuser MIMO GICs and the relative merits of different schemes for interference management. These insights are confirmed by establishing the optimality of the bounds in specific cases using an inner bound on the GDOF derived by the authors in a previous work. It is also shown that many of the existing results on the GDOF of the GIC can be obtained as special cases of the bounds, e. g., by setting K = 2 or the number of antennas at each user to 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the various types of a-peptide folding motifs, delta-turn, which requires a central cis-amide disposition, has been one of the least extensively investigated. In particular, this main-chain reversal topology has been studied in-depth neither in linear/cyclic peptides nor in proteins. This Minireview article assembles and critically analyzes relevant data from a literature survey on the d-turn conformation in those compounds. Unpublished results from recent conformational energy calculations and a preliminary solution-state analysis on a small model peptide, currently ongoing in our laboratories, are also briefly outlined.