995 resultados para United States. National Aeronautics and Space Administration. Aerospace Safety Advisory Panel
Resumo:
We performed stellar population synthesis on the nuclear and extended regions of NGC 1068 by means of near-infrared spectroscopy to disentangle their spectral energy distribution components. This is the first time that such a technique is applied to the whole 0.8-2.4 mu m wavelength interval in this galaxy. NGC 1068 is one of the nearest and probably the most studied Seyfert 2 galaxy, becoming an excellent laboratory to study the interaction between black holes, the jets that they can produce and the medium in which they propagate. Our main result is that traces of young stellar population are found at similar to 100 pc south of the nucleus. The contribution of a power-law continuum in the centre is about 25 per cent, which is expected if the light is scattered from a Seyfert 1 nucleus. We find peaks in the contribution of the featureless continuum about 100-150 pc from the nucleus on both sides. They might be associated with regions where the jet encounters dense clouds. Further support to this scenario is given by the peaks of hot dust distribution found around these same regions and the H(2) emission-line profile, leading us to propose that the peaks might be associated to regions where stars are being formed. Hot dust also has an important contribution to the nuclear region, reinforcing the idea of the presence of a dense, circumnuclear torus in this galaxy. Cold dust appears mostly in the south direction, which supports the view that the south-west emission is behind the plane of the galaxy and is extinguished very likely by dust in the plane. Intermediate-age stellar population contributes significantly to the continuum, especially in the inner 200 pc.
Resumo:
A numerous population of weak line galaxies (WLGs) is often left out of statistical studies on emission-line galaxies (ELGs) due to the absence of an adequate classification scheme, since classical diagnostic diagrams, such as [O iii]/H beta versus [N ii]/H alpha (the BPT diagram), require the measurement of at least four emission lines. This paper aims to remedy this situation by transposing the usual divisory lines between star-forming (SF) galaxies and active galactic nuclei (AGN) hosts and between Seyferts and LINERs to diagrams that are more economical in terms of line quality requirements. By doing this, we rescue from the classification limbo a substantial number of sources and modify the global census of ELGs. More specifically, (1) we use the Sloan Digital Sky Survey Data Release 7 to constitute a suitable sample of 280 000 ELGs, one-third of which are WLGs. (2) Galaxies with strong emission lines are classified using the widely applied criteria of Kewley et al., Kauffmann et al. and Stasinska et al. to distinguish SF galaxies and AGN hosts and Kewley et al. to distinguish Seyferts from LINERs. (3) We transpose these classification schemes to alternative diagrams keeping [N ii]/H alpha as a horizontal axis, but replacing H beta by a stronger line (H alpha or [O ii]), or substituting the ionization-level sensitive [O iii]/H beta ratio with the equivalent width of H alpha (W(H alpha)). Optimized equations for the transposed divisory lines are provided. (4) We show that nothing significant is lost in the translation, but that the new diagrams allow one to classify up to 50 per cent more ELGs. (5) Introducing WLGs in the census of galaxies in the local Universe increases the proportion of metal-rich SF galaxies and especially LINERs. In the course of this analysis, we were led to make the following points. (i) The Kewley et al. BPT line for galaxy classification is generally ill-used. (ii) Replacing [O iii]/H beta by W(H alpha) in the classification introduces a change in the philosophy of the distinction between LINERs and Seyferts, but not in its results. Because the W(H alpha) versus [N ii]/H alpha diagram can be applied to the largest sample of ELGs without loss of discriminating power between Seyferts and LINERs, we recommend its use in further studies. (iii) The dichotomy between Seyferts and LINERs is washed out by WLGs in the BPT plane, but it subsists in other diagnostic diagrams. This suggests that the right wing in the BPT diagram is indeed populated by at least two classes, tentatively identified with bona fide AGN and `retired` galaxies that have stopped forming stars and are ionized by their old stellar populations.
Resumo:
We present a comprehensive analysis of the spatial, kinematic and chemical properties of stars and globular clusters (GCs) in the `ordinary` elliptical galaxy NGC 4494 using data from the Keck and Subaru telescopes. We derive galaxy surface brightness and colour profiles out to large galactocentric radii. We compare the latter to metallicities derived using the near-infrared Calcium Triplet. We obtain stellar kinematics out to similar to 3.5 effective radii. The latter appear flattened or elongated beyond similar to 1.8 effective radii in contrast to the relatively round photometric isophotes. In fact, NGC 4494 may be a flattened galaxy, possibly even an S0, seen at an inclination of similar to 45 degrees. We publish a catalogue of 431 GC candidates brighter than i(0) = 24 based on the photometry, of which 109 are confirmed spectroscopically and 54 have measured spectroscopic metallicities. We also report the discovery of three spectroscopically confirmed ultra-compact dwarfs around NGC 4494 with measured metallicities of -0.4 less than or similar to [Fe/H] less than or similar to -0.3. Based on their properties, we conclude that they are simply bright GCs. The metal-poor GCs are found to be rotating with similar amplitude as the galaxy stars, while the metal-rich GCs show marginal rotation. We supplement our analysis with available literature data and results. Using model predictions of galaxy formation, and a suite of merger simulations, we find that many of the observational properties of NGC 4494 may be explained by formation in a relatively recent gas-rich major merger. Complete studies of individual galaxies incorporating a range of observational avenues and methods such as the one presented here will be an invaluable tool for constraining the fine details of galaxy formation models, especially at large galactocentric radii.
Resumo:
Includes bibliography
Resumo:
Publicacado también en español en: Integración Latinoamericana, No 115, agosto de 1986
Resumo:
Includes bibliography
Resumo:
Incluye Bibliografía
Resumo:
The parameters for the newly discovered open cluster Alessi 95 are established on the basis of available photometric and spectroscopic data, in conjunction with new observations. Colour excesses for spectroscopically observed B- and A-type stars near SU Cas follow a reddening relation described by E(U-B)/E(B-V) = 0.83 + 0.02E(B-V), implying a value of R=AV/E(B-V) ? 2.8 for the associated dust. Alessi 95 has a mean reddening of E(B-V)(B0) = 0.35 +/- 0.02 s.e., an intrinsic distance modulus of V0-MV= 8.16 +/- 0.04 s.e. (+/- 0.21 s.d.), d= 429 +/- 8 pc, and an estimated age of 108.2 yr from zero-age main sequence (ZAMS) fitting of available UBV, CCD BV, NOMAD, and Two Micron All Sky Survey JHKs observations of cluster stars. SU Cas is a likely cluster member, with an inferred space reddening of E(B-V) = 0.33 +/- 0.02 and a luminosity of < MV >=-3.15 +/- 0.07 s.e., consistent with overtone pulsation (PFM= 2.75 d), as also implied by the Cepheids light-curve parameters, rate of period increase and Hipparcos parallaxes for cluster stars. There is excellent agreement of the distance estimates for SU Cas inferred from cluster ZAMS fitting, its pulsation parallax derived from the infrared surface brightness technique and Hipparcos parallaxes, which all agree to within a few per cent.
Resumo:
Aims. We studied four young star clusters to characterise their anomalous extinction or variable reddening and asses whether they could be due to contamination by either dense clouds or circumstellar effects. Methods. We evaluated the extinction law (R-V) by adopting two methods: (i) the use of theoretical expressions based on the colour-excess of stars with known spectral type; and (ii) the analysis of two-colour diagrams, where the slope of the observed colour distribution was compared to the normal distribution. An algorithm to reproduce the zero-age main-sequence (ZAMS) reddened colours was developed to derive the average visual extinction (A(V)) that provides the closest fit to the observational data. The structure of the clouds was evaluated by means of a statistical fractal analysis, designed to compare their geometric structure with the spatial distribution of the cluster members. Results. The cluster NGC 6530 is the only object of our sample affected by anomalous extinction. On average, the other clusters suffer normal extinction, but several of their members, mainly in NGC 2264, seem to have high R-V, probably because of circumstellar effects. The ZAMS fitting provides A(V) values that are in good agreement with those found in the literature. The fractal analysis shows that NGC 6530 has a centrally concentrated distribution of stars that differs from the substructures found in the density distribution of the cloud projected in the A(V) map, suggesting that the original cloud was changed by the cluster formation. However, the fractal dimension and statistical parameters of Berkeley 86, NGC 2244, and NGC 2264 indicate that there is a good cloud-cluster correlation, when compared to other works based on an artificial distribution of points.
Resumo:
VISTA Variables in the Via Lactea (VVV) is an ESO variability survey that is performing observations in near-infrared bands (ZY JHK(s)) toward the Galactic bulge and part of the disk with the completeness limits at least 3 mag deeper than Two Micron All Sky Survey. In the present work, we searched in the VVV survey data for background galaxies near the Galactic plane using ZY JHK(s) photometry that covers 1.636 deg(2). We identified 204 new galaxy candidates by analyzing colors, sizes, and visual inspection of multi-band (ZY JHK(s)) images. The galaxy candidate colors were also compared with the predicted ones by star count models considering a more realistic extinction model at the same completeness limits observed by VVV. A comparison of the galaxy candidates with the expected one by Millennium simulations is also presented. Our results increase the number density of known galaxies behind the Milky Way by more than one order of magnitude. A catalog with galaxy properties including ellipticity, Petrosian radii, and ZY JHK(s) magnitudes is provided, as well as comparisons of the results with other surveys of galaxies toward the Galactic plane.
Resumo:
Context. Recent studies have confirmed the long standing suspicion that M 22 shares a metallicity spread and complex chemical enrichment history similar to that observed in omega Cen. M 22 is among the most massive Galactic globular clusters and its color-magnitude diagram and chemical abundances reveal the existence of sub-populations. Aims. To further constrain the chemical diversity of M 22, necessary to interpret its nucleosynthetic history, we seek to measure relative abundance ratios of key elements (carbon, nitrogen, oxygen, and fluorine) best studied, or only available, using high-resolution spectra at infrared wavelengths. Methods. High-resolution (R = 50 000) and high S/N infrared spectra were acquired of nine red giant stars with Phoenix at the Gemini-South telescope. Chemical abundances were calculated through a standard 1D local thermodynamic equilibrium analysis using Kurucz model atmospheres. Results. We derive [Fe/H] = -1.87 to -1.44, confirming at infrared wavelengths that M 22 does present a [Fe/H] spread. We also find large C and N abundance spreads, which confirm previous results in the literature but based on a smaller sample. Our results show a spread in A(C+N+O) of similar to 0.7 dex. Similar to mono-metallic globular clusters, M 22 presents a strong [Na/Fe]-[O/Fe] anticorrelation as derived from Na and CO lines in the K band. For the first time we recover F abundances in M 22 and find that it exhibits a 0.6 dex variation. We find tentative evidence for a flatter A(F)-A(O) relation compared to higher metallicity globular clusters. Conclusions. Our study confirms and expands upon the chemical diversity seen in this complex stellar system. All elements studied to date show large abundance spreads which require contributions from both massive and low mass stars.
Resumo:
Aims. We study galaxy pair samples selected from the Sloan Digital Sky Survey (SDSS-DR7) and we perform an analysis of minor and major mergers with the aim of investigating the dependence of galaxy properties on interactions. Methods. We build a galaxy pair catalog requiring r(p) < 25 kpc h(-1) and Delta V < 350 km s(-1) within redshift z < 0.1. By visual inspection of SDSS images we remove false identifications and we classify the interactions into three categories: pairs undergoing merging, M; pairs with evident tidal features, T; and non disturbed, N. We also divide the pair sample into minor and major interactions according to the luminosity ratio of the galaxy members. We study star formation activity through colors, the 4000 angstrom break, and star formation rates. Results. We find that similar to 10% of the pairs are classified as M. These systems show an excess of young stellar populations as inferred from the D-n(4000) spectral index, colors, and star formation rates of the member galaxies, an effect which we argue is directly related to the ongoing merging process. We find similar to 30% of the pairs exhibiting tidal features (T pairs) with member galaxies showing evidence of old stellar populations. This can be associated either to the disruptive effect of some tidal interactions, or to the longer time-scale of morphological disturbance with respect to the bursts of the tidal induced star formation. Regardless of the color distribution, we find a prominent blue peak in the strongest mergers, while pairs with tidal signs under a minor merger show a strong red peak. Therefore, our results show that galaxy interactions are important in driving the evolution of galaxy bimodality. By adding stellar masses and star formation rates of the two members of the pairs, we explore the global efficiency of star formation of the pairs as a whole. We find that, at a given total stellar mass, major mergers are significantly more efficient (a factor approximate to 2) in forming new stars, with respect to both minor mergers or a control sample of non-interacting galaxies. We conclude that the characteristics of the interactions and the ratio of luminosity galaxy pair members involved in a merger are important parameters in setting galaxy properties.