897 resultados para Type-1 Nat1
Resumo:
BACKGROUND: Estimates of drug resistance incidence to modern first-line combination antiretroviral therapies against human immunodeficiency virus (HIV) type 1 are complicated by limited availability of genotypic drug resistance tests (GRTs) and uncertain timing of resistance emergence. METHODS: Five first-line combinations were studied (all paired with lamivudine or emtricitabine): efavirenz (EFV) plus zidovudine (AZT) (n = 524); EFV plus tenofovir (TDF) (n = 615); lopinavir (LPV) plus AZT (n = 573); LPV plus TDF (n = 301); and ritonavir-boosted atazanavir (ATZ/r) plus TDF (n = 250). Virological treatment outcomes were classified into 3 risk strata for emergence of resistance, based on whether undetectable HIV RNA levels were maintained during therapy and, if not, whether viral loads were >500 copies/mL during treatment. Probabilities for presence of resistance mutations were estimated from GRTs (n = 2876) according to risk stratum and therapy received at time of testing. On the basis of these data, events of resistance emergence were imputed for each individual and were assessed using survival analysis. Imputation was repeated 100 times, and results were summarized by median values (2.5th-97.5th percentile range). RESULTS: Six years after treatment initiation, EFV plus AZT showed the highest cumulative resistance incidence (16%) of all regimens (<11%). Confounder-adjusted Cox regression confirmed that first-line EFV plus AZT (reference) was associated with a higher median hazard for resistance emergence, compared with other treatments: EFV plus TDF (hazard ratio [HR], 0.57; range, 0.42-0.76), LPV plus AZT (HR, 0.63; range, 0.45-0.89), LPV plus TDF (HR, 0.55; range, 0.33-0.83), ATZ/r plus TDF (HR, 0.43; range, 0.17-0.83). Two-thirds of resistance events were associated with detectable HIV RNA level ≤500 copies/mL during treatment, and only one-third with virological failure (HIV RNA level, >500 copies/mL). CONCLUSIONS: The inclusion of TDF instead of AZT and ATZ/r was correlated with lower rates of resistance emergence, most likely because of improved tolerability and pharmacokinetics resulting from a once-daily dosage.
Resumo:
Switzerland has a complex human immunodeficiency virus (HIV) epidemic involving several populations. We examined transmission of HIV type 1 (HIV-1) in a national cohort study. Latent class analysis was used to identify socioeconomic and behavioral groups among 6,027 patients enrolled in the Swiss HIV Cohort Study between 2000 and 2011. Phylogenetic analysis of sequence data, available for 4,013 patients, was used to identify transmission clusters. Concordance between sociobehavioral groups and transmission clusters was assessed in correlation and multiple correspondence analyses. A total of 2,696 patients were infected with subtype B, 203 with subtype C, 196 with subtype A, and 733 with recombinant subtypes (mainly CRF02_AG and CRF01_AE). Latent class analysis identified 8 patient groups. Most transmission clusters of subtype B were shared between groups of gay men (groups 1-3) or between the heterosexual groups "heterosexual people of lower socioeconomic position" (group 4) and "injection drug users" (group 8). Clusters linking homosexual and heterosexual groups were associated with "older heterosexual and gay people on welfare" (group 5). "Migrant women in heterosexual partnerships" (group 6) and "heterosexual migrants on welfare" (group 7) shared non-B clusters with groups 4 and 5. Combining approaches from social and molecular epidemiology can provide insights into HIV-1 transmission and inform the design of prevention strategies.
Resumo:
BACKGROUND: Drug-resistant human immunodeficiency virus type 1 (HIV-1) minority variants (MVs) are present in some antiretroviral therapy (ART)-naive patients. They may result from de novo mutagenesis or transmission. To date, the latter has not been proven. METHODS: MVs were quantified by allele-specific polymerase chain reaction in 204 acute or recent seroconverters from the Zurich Primary HIV Infection study and 382 ART-naive, chronically infected patients. Phylogenetic analyses identified transmission clusters. RESULTS: Three lines of evidence were observed in support of transmission of MVs. First, potential transmitters were identified for 12 of 16 acute or recent seroconverters harboring M184V MVs. These variants were also detected in plasma and/or peripheral blood mononuclear cells at the estimated time of transmission in 3 of 4 potential transmitters who experienced virological failure accompanied by the selection of the M184V mutation before transmission. Second, prevalence between MVs harboring the frequent mutation M184V and the particularly uncommon integrase mutation N155H differed highly significantly in acute or recent seroconverters (8.2% vs 0.5%; P < .001). Third, the prevalence of less-fit M184V MVs is significantly higher in acutely or recently than in chronically HIV-1-infected patients (8.2% vs 2.5%; P = .004). CONCLUSIONS: Drug-resistant HIV-1 MVs can be transmitted. To what extent the origin-transmission vs sporadic appearance-of these variants determines their impact on ART needs to be further explored.
Resumo:
Host genome studies are increasingly available for the study of infectious disease susceptibility. Current technologies include large-scale genotyping, genome-wide screens such as transcriptome and silencing (silencing RNA) studies, and increasingly, the possibility to sequence complete genomes. These approaches are of interest for the study of individuals who remain uninfected despite documented exposure to human immunodeficiency virus type 1. The main limitation remains the ascertainment of exposure and establishing large cohorts of informative individuals. The pattern of enrichment for CCR5 Δ32 homozygosis should serve as the standard for assessing the extent to which a given cohort (of white subjects) includes a large proportion of exposed uninfected individuals.
Resumo:
The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.
Resumo:
To report the case of a child with short absences and occasional myoclonias since infancy who was first diagnosed with an idiopathic generalized epilepsy, but was documented at follow-up to have a mild phenotype of glucose transporter type 1 deficiency syndrome. Unlike other reported cases of Glut-1 DS and epilepsy, this child had a normal development as well as a normal head growth and neurological examination. Early onset of seizures and later recognized episodes of mild confusion before meals together with persistent atypical EEG features and unexpected learning difficulties led to the diagnosis. Seizure control and neuropsychological improvements were obtained with a ketogenic diet.
Resumo:
Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1(tm1a)) that reduces mRNA to ∼10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1(tm1a/tm1a)). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1(tm1a/tm1a) embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice.
Resumo:
A host genetic variant (-35C/T) correlates with increased human leukocyte antigen C (HLA-C) expression and improved control of HIV-1. HLA-C-mediated immunity may be particularly protective because HIV-1 is unable to remove HLA-C from the cell surface, whereas it can avoid HLA-A- and HLA-B-mediated immunity by Nef-mediated down-modulation. However, some individuals with the protective -35CC genotype exhibit high viral loads. Here, we investigated whether the ability of HIV-1 to replicate efficiently in the "protective" high-HLA-C-expression host environment correlates with specific functional properties of Nef. We found that high set point viral loads (sVLs) were not associated with the emergence of Nef variants that had acquired the ability to down-modulate HLA-C or were more effective in removing HLA-A and HLA-B from the cell surface. However, in individuals with the protective -35CC genotype we found a significant association between sVLs and the efficiency of Nef-mediated enhancement of virion infectivity and modulation of CD4, CD28, and the major histocompatibility complex class II (MHC-II)-associated invariant chain (Ii), while this was not observed in subjects with the -35TT genotype. Since the latter Nef functions all influence the stimulation of CD4(+) T helper cells by antigen-presenting cells, they may cooperate to affect both the activation status of infected T cells and the generation of an antiviral cytotoxic T-lymphocyte (CTL) response. In comparison, different levels of viremia in individuals with the common -35TT genotype were not associated with differences in Nef function but with differences in HLA-C mRNA expression levels. Thus, while high HLA-C expression may generally facilitate control of HIV-1, Nef may counteract HLA-C-mediated immune control in some individuals indirectly, by manipulating T-cell function and MHC-II antigen presentation.
Resumo:
BACKGROUND: By analyzing human immunodeficiency virus type 1 (HIV-1) pol sequences from the Swiss HIV Cohort Study (SHCS), we explored whether the prevalence of non-B subtypes reflects domestic transmission or migration patterns. METHODS: Swiss non-B sequences and sequences collected abroad were pooled to construct maximum likelihood trees, which were analyzed for Swiss-specific subepidemics, (subtrees including ≥80% Swiss sequences, bootstrap >70%; macroscale analysis) or evidence for domestic transmission (sequence pairs with genetic distance <1.5%, bootstrap ≥98%; microscale analysis). RESULTS: Of 8287 SHCS participants, 1732 (21%) were infected with non-B subtypes, of which A (n = 328), C (n = 272), CRF01_AE (n = 258), and CRF02_AG (n = 285) were studied further. The macroscale analysis revealed that 21% (A), 16% (C), 24% (CRF01_AE), and 28% (CRF02_AG) belonged to Swiss-specific subepidemics. The microscale analysis identified 26 possible transmission pairs: 3 (12%) including only homosexual Swiss men of white ethnicity; 3 (12%) including homosexual white men from Switzerland and partners from foreign countries; and 10 (38%) involving heterosexual white Swiss men and females of different nationality and predominantly nonwhite ethnicity. CONCLUSIONS: Of all non-B infections diagnosed in Switzerland, <25% could be prevented by domestic interventions. Awareness should be raised among immigrants and Swiss individuals with partners from high prevalence countries to contain the spread of non-B subtypes.
Resumo:
SUMMARYDiabetes is characterized by insulin deficiency that results from the destruction of insulin-secreting pancreatic beta-cells (Type 1), or in part from beta-cell death and insulin secretion defects (Type 2). Therefore, understanding the mechanisms of beta cell neogenesis (to generate unlimited supply of beta cells for T1D transplantation] or identifying the specific genes that favors insulin secretion or beta-cell survival is of great importance for the management of diabetes. The transcriptional repressor RE-1 Silencing Transcription Factor (REST) restricts the expression of a large number of genes containing its binding element, called Repressor Element-1 (RE-1), to neurons and beta cells. To do so, REST is ubiquitously expressed but in neurons and beta cells. To identify these essential genes and their functional significance in beta cells, we have generated transgenic mice that express REST specifically in beta cells under the control of the rat insulin promoter (RIP-REST mice). This resulted in the repression of the RE-1- containing genes in beta cells, and we analyzed the consequences.We first showed that RIP-REST mice were glucose-intolerant because of a defective insulin secretion. To explain this defect, we identified that a subset of the REST target genes were necessary for insulin exocytosis, such as Snap25, Synaptotagmin (Syt) IX, Complexin II, and Ica512, and we further demonstrated that among the identified REST targets, Syt IV and VII were also involved in insulin release. We next analyzed a novel RIP-REST mouse line that featured diabetes and we showed that this defect was due to a major loss of beta-cell mass. To explain this phenotype, we identified REST target genes that were involved in beta-cell survival, such as Ibl, Irs2, Ica512 and Connexin36, and revealed that another REST target, Cdk5r2 is also involved in beta-cell protection. In a third part, we finally suggest that REST may be important for pancreatic endocrine differentiation, since transgenic mice expressing constitutive REST in pancreatic multipotent progenitors show impaired formation of Ngn3-expressing endocrine- committed precursors, and impaired formation of differentiated endocrine cells. Mapping the pattern of REST expression in wild type animals indicates that it is expressed in multipotent progenitors to become then excluded from endocrine cells. Preliminary results suggest that a downregulation of REST would result in relieved expression of at least the Mytl target, favoring subsequent acquisition of the endocrine competence by endocrine precursor cells.Thus, we propose that the REST/RE-1 system is an important feature for beta-cell neogenesis, function and survivalRESUMELe diabète se caractérise par une déficience en insuline qui résulte d'une destruction des cellules bêta (β) pancréatiques sécrétant l'insuline [Type 1], ou à un défaut de sécrétion d'insuline qui peut être associé à la mort des cellules β (Type 2). La compréhension des mécanismes de néogenèse des cellules β, ainsi que l'identification de gènes impliqués dans leur survie et dans le contrôle de la sécrétion d'insuline est donc importante pour le traitement du diabète. Le facteur de transcription de type répresseur, RE-1 Silencing Transcription Factor [REST], contribue à la spécificité d'expression dans les neurones et les cellules β, d'un grand nombre de gènes portant son motif de fixation, le Repressor Element-1 (RE-1). Pour cela, REST est exprimé dans toutes les cellules, sauf dans les neurones et les cellules β. Afin d'identifier les gènes cibles de REST ainsi que leur fonction au sein de la cellule β, nous avons généré des souris transgéniques qui expriment REST spécifiquement dans ces cellules, sous la dépendance du promoteur de l'insuline (souris RIP-REST]. Cette expression ectopique de REST a permis de diminuer l'expression des gènes contrôlés par REST, et d'en analyser les conséquences. Nous avons montré que les souris RIP-REST étaient intolérantes au glucose et que ceci était du à un défaut de sécrétion d'insuline. Pour expliquer ce phénotype, nous avons mis en évidence le fait que des gènes cibles de REST codent pour des protéines importantes pour l'exocytose de l'insuline, comme SNAP25, Synaptotagmin (Syt) IX, Complexin II ou ICA512. De plus, nous avons découvert deux nouvelles cibles de REST impliquées dans la sécrétion d'insuline, Syt IV et Syt VII. Par la suite, nous avons démontré qu'une nouvelle lignée de souris RIP-REST étaient atteintes d'un diabète sévère à cause d'une perte massive des cellules β. La disparition de ces cellules a été expliquée par l'identification de gènes cibles de REST impliqués dans la survie des cellules β, comme Ibl, Irs2, Ica512 ou la Connexine36. De plus, nous avons découvert qu'une nouvelle cible, Cdk5r2, était aussi impliquée dans la survie des cellules β. Dans une dernière partie, nous suggérons, grâce à l'analyse de nouvelles souris transgéniques exprimant constitutivement REST dans les cellules progénitrices du pancréas embryonnaire, que REST empêche la formation des précurseurs de cellules endocrines ainsi que la différenciation de ces cellules. L'analyse de l'expression de REST au cours du développement embryonnaire du pancréas indique que la diminution de l'expression de REST conduit en partie, à l'induction d'un de ses gènes cible Mytl, qui favorise la formation de précurseurs endocrines. Nous proposons donc que le système REST/RE-1 est important pour la génération, la fonction et la survie des cellules β.
Resumo:
Background. Human immunodeficiency virus type 1 (HIV-1) transmitted drug resistance (TDR) can compromise antiretroviral therapy (ART) and thus represents an important public health concern. Typically, sources of TDR remain unknown, but they can be characterized with molecular epidemiologic approaches. We used the highly representative Swiss HIV Cohort Study (SHCS) and linked drug resistance database (SHCS-DRDB) to analyze sources of TDR. Methods. ART-naive men who have sex with men with infection date estimates between 1996 and 2009 were chosen for surveillance of TDR in HIV-1 subtype B (N = 1674), as the SHCS-DRDB contains pre-ART genotypic resistance tests for >69% of this surveillance population. A phylogeny was inferred using pol sequences from surveillance patients and all subtype B sequences from the SHCS-DRDB (6934 additional patients). Potential sources of TDR were identified based on phylogenetic clustering, shared resistance mutations, genetic distance, and estimated infection dates. Results. One hundred forty of 1674 (8.4%) surveillance patients carried virus with TDR; 86 of 140 (61.4%) were assigned to clusters. Potential sources of TDR were found for 50 of 86 (58.1%) of these patients. ART-naive patients constitute 56 of 66 (84.8%) potential sources and were significantly overrepresented among sources (odds ratio, 6.43 [95% confidence interval, 3.22-12.82]; P < .001). Particularly large transmission clusters were observed for the L90M mutation, and the spread of L90M continued even after the near cessation of antiretroviral use selecting for that mutation. Three clusters showed evidence of reversion of K103N or T215Y/F. Conclusions. Many individuals harboring viral TDR belonged to transmission clusters with other Swiss patients, indicating substantial domestic transmission of TDR in Switzerland. Most TDR in clusters could be linked to sources, indicating good surveillance of TDR in the SHCS-DRDB. Most TDR sources were ART naive. This, and the presence of long TDR transmission chains, suggests that resistance mutations are frequently transmitted among untreated individuals, highlighting the importance of early diagnosis and treatment.
Resumo:
Rapport de synthèseLes troubles de la glycosylation (Congenital Disorders of Glycosylation, CDG) regroupent une famille de maladies multi-systémiques héréditaires causées par des défauts dans la synthèse de glycoconjugés. La glycosylation est une réaction enzymatique consistant à lier de façon covalente un glucide à une chaîne peptidique ou une protéine. Il existe deux types de glycosylation. La N-gjycosylation est l'addition de glucides aux chaînes peptidiques en croissance dès leur entrée dans la lumière du réticulum endoplasmique. Elle s'effectue sur les futures glycoprotéines membranaires et conduit à des chaînes de sucres courtes et ramifiées. La O-glycosylation est l'addition de glucides au niveau des résidus hydroxylés des acides aminés sérine et thréonine des chaînes peptidiques déjà présentes dans la lumière de l'appareil de Golgi. Elle est, dans la plupart des cas, effectuée sur îes protéoglycanes et conduit à des chaînes de sucres longues et non ramifiées. La classification des CDG repose sur le niveau de l'étape limitante de la glycosylation. Les CDG de type 1, plus fréquents, regroupent les déficits enzymatiques se situant en amont du transfert de Poligosaccharide sur la chaîne peptidique. Les CDG de type 2 regroupent ceux ayant lieu en aval de ce transfert. Parmi les nombreux différents sous-types de CDG, le CDG de type ld est causé par une anomalie de la mannosyltransferase, enzyme codée par le gène ALG3 (chromosome 3q27). Jusqu'à ce jour, six patients atteints de CDG ld ont été reportés dans la littérature. Notre travail a permis de décrire un septième patient et d'affiner les caractéristiques cliniques, biologiques, neuroradiologiques et moléculaires du CDG ld. Notre patient est notamment porteur d'une nouvelle mutation de type missense sur le gène ALG3. Tous les patients atteints de CDG ld présentent une encéphalopathie progressive avec microcéphalie, retard psychomoteur sévère et épilepsie. Une ostéopénie marquée est présente chez certains patients. Elle est parfois sous diagnostiquée et révélée uniquement lors de fracture pathologique. Les patients atteints de CDG ld présentent également des traits dysmorphiques typiques, mais aucune atteinte multi-systémique ou anomalie biologique spécifique n'est retrouvée telle que dans les autres types de CDG. Le dépistage biochimique des troubles de la glycosylation se fait par une analyse simple et peu coûteuse qui est l'analyse de la transferrine sérique par isoelectrofocusing ou par électrophorèse capillaire. Un tel dépistage devrait être effectué chez tout patient présentant une encéphalopathie d'origine indéterminée, et cela même en l'absence d'atteinte multi- systémique. Notre travail a été publié sous forme d'article de type « short report », peer-reviewed, dans le Journal of Inherited Metabolic Diseases. Le Journal est une révue spécialisée du domaine des erreirs innées du métabolisme. S'agissant d'un seul patient rapporté, l'article ne montre que très synthétiquement le travail effectué, Pour cette raison un complément à l'article avec matériel, méthodes et résultats figure ci-après et concerne la partie de recherche moléculaire de notre travail. La doctorante a non seulement encadré personnellement le patient au niveau clinique et biochimique, mais a plus particulièrement mis au point l'analyse moléculaire du gène ALG3 dans le laboratoire de Pédiatrie Moléculaire pour la première fois ; cela a impliqué l'étude du gène, le choix des oligonucleotides et l'optimisation des réactions d'amplification et séquençage.
Resumo:
Tat activates transcription by interacting with Sp1, NF-kappaB, positive transcription elongation factor b, and trans-activator-responsive element (TAR). Tat and Sp1 play major roles in transcription by protein-protein interactions at human immunodeficiency virus, type 1 (HIV-1) long terminal repeat. Sp1 activates transcription by interacting with cyclin T1 in the absence of Tat. To disrupt the transcription activation by Tat and Sp1, we fused Sp1-inhibiting polypeptides, zinc finger polypeptide, and the TAR-binding mutant Tat (TatdMt) together. A designed or natural zinc finger and Tat mutant fusion was used to target the fusion to the key regulatory sites (GC box and TAR) on the long terminal repeat and nascent short transcripts to disrupt the molecular interaction that normally result in robust transcription. The designed zinc finger and TatdMt fusions were targeted to the TAR, and they potently repressed both transcription and replication of HIV-1. The Sp1-inhibiting POZ domain, TatdMt, and zinc fingers are key functional domains important in repression of transcription and replication. The designed artificial zinc fingers were targeted to the high affinity Sp1-binding site, and by being fused with TatdMt and POZ domain, they strongly block both Sp1-cyclin T1-dependent transcription and Tat-dependent transcription, even in the presence of excess expressed Tat.
Resumo:
Pancreatic ß cells are highly specialized endocrine cells located within the islets of Langerhans in the pancreas. Their main role is to produce and secrete insulin, the hormone essential for the regulation of glucose homeostasis and body's metabolism. Diabetes mellitus develops when the amount of insulin released by ß cells is not sufficient to cover the metabolic demand. In type 1 diabetes (5-10% of diagnoses) insulin deficiency is caused by the autoimmune destruction of pancreatic ß cells. Type 2 diabetes (90% of diagnoses) results from a genetic predisposition and from the presence of adverse environmental conditions. The combination of these factors reduces insulin sensitivity of peripheral target tissues, causes impairment in ß-cell function and can lead to partial loss of ß cells. The development of novel therapeutic strategies for the treatment of diabetes necessitates the comprehension of the cellular processes involved in dysfunction and loss of ß cells. My thesis was focused on the involvement in the physiopathological processes leading to the development of diabetes of a class of small regulatory RNA molecules, called microRNAs (miRNAs) that post- transcriptionally regulate gene expression. Global miRNA profiling in pancreatic islets of two animal models of diabetes, the db/db mice and mice that were fed a high fat diet (HFD), characterized by obesity and insulin resistance, led us to identify two groups of miRNAs displaying expression changes under pre-diabetic and diabetic conditions. Among the miRNAs already upregulated in pre-diabetic db/db mice and HFD mice, miR- 132 was found to have beneficial effects on pancreatic ß cell function and survival. Indeed, mimicking the upregulation of miR-132 in primary pancreatic islet cells and ß-cell lines improved glucose- induced insulin secretion and favored survival of the cells upon exposure to pro-apoptotic stimuli such as palmitate and cytokines. MiR-132 was found to exert its action by enhancing the expression of MafA, a transcription factor essential for ß-cell function, survival and identity. On the other hand, up-regulation of miR-199a-5p and miR-199a-3p was detectable only in the islets of diabetic db/db mice and resulted in impaired insulin secretion and sensitization of the cells to apoptosis. MiR-199a- 5p was found to decrease insulin secretion by inducing the expression of granuphilin, a potent inhibitor of ß cell exocytosis. In contrast, miR-199a-3p was demonstrated to directly target and reduce the expression of two key ß-cell genes, mTOR and cMET, resulting in impaired ß-cell adaptation to metabolic demands and loss by apoptosis. Our findings suggest that miRNAs are important players in the onset of type 2 diabetes. MiRNA expression is adjusted in pancreatic ß cells exposed to a diabetogenic environment. These changes initially concern miRNAs responsible for adaptive processes aimed at compensating the onset of insulin resistance, but later such changes can be overlapped by modifications in the level of several additional miRNAs that favor ß-cell failure and the onset of type 2 diabetes.