990 resultados para Two Vertical Cylinders
Resumo:
Type 1, X-linked Hyper-IgM syndrome (HIGM1) is caused by mutations in the gene encoding the CD154 protein, also known as CD40 ligand (CD40LG). CD40L is expressed in activated T cells and interacts with CD40 receptor expressed on B lymphocytes and dendritic cells. Affected patients present cellular and humoral immune defects, with infections by intracellular, opportunistic and extracellular pathogens. In the present study we investigated the molecular defects underlying disease in four patients with HIGM1. We identified four distinct CD40L mutations, two of them which have not been previously described. P1 harboured the novel p.G227X mutation which abolished CD40L expression. P2 had a previously described frame shift deletion in exon 2 (p.I53fsX65) which also prevented protein expression. P3 demonstrated the previously known p.V126D change in exon 4, affecting the TNF homology (TNFH) domain. Finally, P4 evidenced the novel p.F229L mutation also located in the TNFH domain. In silico analysis of F229L predicted the change to be pathological, affecting the many hydrophobic interactions of this residue. Precise molecular diagnosis in HIGM syndrome allows reliable detection of carriers, making genetic counselling and prenatal diagnosis possible.
Resumo:
Objective: To examine the effects of two commercial media on the development of mouse ova fertilized in vitro to the blastocyst stage. Design: Animal model. Setting: Academic institution. Animal(s): Eight-week old, superovulated mice. Intervention(s): One-cell embryos cultured in vitro up to the blastocyst stage in potassium-enriched simplex optimized medium (KSOM) or G1/G2 medium. Main Outcome Measure(s): Blastocyst and hatching rates, total cell number count, and proportion of allocation of cells to the inner cell mass (ICM) and trophectoderm (TE). Result(s): The percentage of zygotes that developed to the blastocyst stage 96 and 120 hours after insemination was statistically significantly higher in the KSOM group. The percentage of blastocysts that partially or completely hatched by day 5 of culture was 84% and 71% for the KSOM and G1/G2 groups, respectively, showing a statistically significant difference between the groups. The mean number of ICM cells was 11.7 +/- 4.0 and 9.2 +/- 5.2 for the zygotes cultured in KSOM and G1/G2 media, respectively, revealing a statistically significantly higher cell number in the ICM of blastocysts derived from culture in KSOM medium. The ICM/TE ratio in the blastocysts cultured in KSOM or G1/G2 media was similar in both groups. Conclusion(s): Commercially available KSOM medium is superior to sequential G1/G2 media for culturing one-cell embryos up to the blastocyst stage in the mouse IVF model.
Resumo:
Alagille syndrome is a rare developmental disorder combining bile duct paucity, congenital cardiopathy, facial dysmorphy, vertebrae defects, and ocular abnormalities; and frequent renal abnormalities. It does not usually predispose to malignancies. Nephroblastoma has been observed in many developmental disorders, but never in Alagille syndrome. We report two original cases of nephroblastoma associated to Alagille syndrome. We identified a new V136G JAG1 missense mutation in one patient and a constitutional deletion of 20p12 in the other. In one nephroblastoma an additional somatic 1p36 deletion was present. The link between Alagille syndrome, JAG1 alterations and nephroblastoma is discussed.
Resumo:
Kallmann syndrome (KS) is a developmental disease characterized by the association of isolated hypogonadotropic hypogonadism and anosmia/hyposmia. We report an unusual presentation of two females with KS and empty sella. These females, aged at 20 and 29-year-old, presented primary amenorrhea with prepubertal estradiol and low gonadotropin levels. No other significant clinical signs were observed. Empty sella was observed on MRI in both cases. Sequencing of FGFR1 gene, recently implicated in autosomal form of KS, was performed and one splicing mutation (IVS14 + 1G > A) was identified in one patient.
Resumo:
Background: GH insensitivity (GHI) syndrome caused by STAT5B mutations was recently reported, and it is characterized by extreme short stature and immune dysfunction. Treatment with recombinant human IGF1 (rhIGF1) is approved for patients with GHI, but the growth response to this therapy in patients with STAT5B mutations has not been reported. Objectives: To report the clinical features, molecular findings, and the short-term growth response to rhIGF1 therapy in patients with STAT5B mutation. Subjects and methods: Hormonal and immunological evaluations were performed in two male siblings with GHI associated with atopic eczema, interstitial lung disease, and thrombocytopenic purpura. STAT5B genes were directly sequenced. The younger sibling was treated with rhIGF1 at a dose of 110 mu g/kg BID. Results: Both siblings had laboratory findings compatible with GHI associated with hyperprolactinemia. Lymphopenia and reduced number of natural killer cells without immunoglobulin abnormalities were observed. STAT5B sequence revealed a homozygous frameshift mutation (p.L142fsX161) in both siblings. The younger sibling (9.9 years of age) was treated with rhIGF1 at appropriate dosage, and he did not present any significant change in his growth velocity (from 2.3 to 3.0 cm/year after 1.5 years of therapy). The presence of a chronic illness could possibly be responsible for the poor result of rhIGF1 treatment. Further studies in patients with STAT5B defects are necessary to define the response to rhIGF1 treatment in this disorder. Conclusion: GHI associated with immune dysfunction, especially interstitial lung disease, and hyperprolactinemia is strongly suggestive of a mutation in STAT5B in both sexes.
Resumo:
The human blood fluke Schistosoma mansoni is the primary cause of schistosomiasis, a debilitating disease that affects 200 million individuals in over 70 countries. The biogenic amine serotonin is essential for the survival of the parasite and serotonergic proteins are potential novel drug targets for treating schistosomiasis. Here we characterize two novel serotonin transporter gene transcripts, SmSERT-A and SmSERT-B, from S. mansoni. Southern blot analysis shows that the two mRNAs are the products of different alleles of a single SmSERT gene locus. The two SmSERT forms differ in three amino acid positions near the N-terminus of the protein. Both SmSERTs are expressed in the adult form and in the sporocyst form (infected snails) of the parasite, but are absent from all other stages of the parasite`s complex life cycle. Heterologous expression of the two cDNAs in mammalian cells resulted in saturable, sodium-dependent serotonin transport activity with an apparent affinity for serotonin comparable to that of the human serotonin transporter. Although the two SmSERTs are pharmacologically indistinguishable from each other, efflux experiments reveal notably higher substrate selectivity for serotonin compared with their mammalian counterparts. Several well-established substrates for human SERT including (+/-)MDMA, S-(+)amphetamine, RU 24969, and m-CPP are not transported by SmSERTs, underscoring the higher selectivity of the schistosomal isoforms. Voltage-clamp recordings of SmSERT substrate-elicited currents confirm the substrate selectivity observed in efflux experiments and suggest that it may be possible to exploit the electrogenic nature of SmSERT to screen for compounds that target the parasite in vivo. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Renal ischemia/reperfusion (I/R) injury is one of the frequent causes of acute renal failure (ARF) due to the complex, interrelated sequence of events, that result in damage to and death of kidney cells. Cells of the proximal tubular epithelium are especially susceptible to I/R injury, leading to acute tubular necrosis, which plays a pivotal role in the pathogenesis of ARE Several models have been explicated to assess morphological changes, including those of Jabonski et al. and Goujon et al. We compared the 2 models for histopathological evaluation of 30- or 120-minute periods of renal ischemia followed by 24-hour reperfusion in rats. Several changes were observed after application of the 2 models: proximal tubular cell necrosis, loss of brush border, vacuolization, denudation of tubular basement membrane as a consequence of flattening of basal cells, and presence of intratubular exfoliated cells in the lumen of proximal convoluted tubules at various stages of degeneration (karyorexis, kariopyknosis and karyolysis). Evaluating tubular lesions after 2 periods of experimental ischemia with light microscopy allowed us to conclude that the Goujon classification better characterized the main changes in cortical renal tubules after ischemia.
Resumo:
P>Progress in understanding the pathophysiology of abdominal aortic aneurysms (AAA) is dependent in part on the development and application of effective animal models that recapitulate key aspects of the disease. The objective was to produce an experimental model of AAA in rats by combining two potential causes of metalloproteinase (MMP) secretion: inflammation and turbulent blood flow. Male Wistar rats were randomly divided in four groups: Injury, Stenosis, Aneurysm and Control (40/group). The Injury group received a traumatic injury to the external aortic wall. The Stenosis group received an extrinsic stenosis at a corresponding location. The Aneurysm group received both the injury and stenosis simultaneously, and the Control group received a sham operation. Animals were euthanized at days 1, 3, 7 and 15. Aorta and/or aneurysms were collected and the fragments were fixed for morphologic, immunohistochemistry and morphometric analyses or frozen for MMP assays. AAAs had developed by day 3 in 60-70% of the animals, reaching an aortic dilatation ratio of more than 300%, exhibiting intense wall remodelling initiated at the adventitia and characterized by an obvious inflammatory infiltrate, mesenchymal proliferation, neoangiogenesis, elastin degradation and collagen deposition. Immunohistochemistry and zymography studies displayed significantly increased expressions of MMP-2 and MMP-9 in aneurysm walls compared to other groups. The haemo-dynamic alterations caused by the stenosis may have provided additional contribution to the MMPs liberation. This new model illustrated that AAA can be multifactorial and confirmed the key roles of MMP-2 and MMP-9 in this dynamic remodelling process.
Resumo:
Context: Loss-of-function mutations of the kisspeptin-1 receptor gene, KISS1R, have been identified in patients with normosmic isolated hypogonadotropic hypogonadism (nIHH). Objective: To investigate KISS1R defects in patients with absent or delayed puberty. Patients: We investigated KISS1R gene defects in a cohort of 99 Brazilian patients with nIHH or constitutional delay of puberty (CDP). Methods: The entire coding region of KISS1R was amplified by PCR followed by automatic sequencing. In addition, screening for KISS1R exonic deletions was performed by multiplex ligation-dependent probe amplification. Results: One novel homozygous KISS1R mutation was identified in two siblings with nIHH. This variant was an insertion/deletion (indel) mutation characterized by the deletion of three nucleotides (GCA) at position -2 to -4, and by the insertion of seven nucleotides (ACCGGCT) at the same position, within the 30 splice acceptor site of intron 2 of KISS1R. The brothers who carried this KISS1R mutation had no clinical evidence of pubertal development at the ages of 14 and 20 years. Computational analysis of this indel mutation predicted the generation of an abnormal protein. In addition, a new heterozygous KISS1R variant (p.E252Q) was identified in a male patient with sporadic nIHH. However, in vitro studies of this variant did not demonstrate functional impairment. Only known polymorphisms were identified in patients with CDP. Conclusion: Loss-of-function mutations of KISS1R represents a rare cause of nIHH, and was absent in patients with CDP. We have described a novel KISS1R homozygous splice acceptor site mutation in the familial form of nIHH.
Resumo:
The brain noradrenergic system has been implicated in the expression of defensive behaviors elicited by acute stress. The dorsal periaqueductal gray area (dPAG) is a key structure involved in the behavioral and cardiovascular responses elicited by fear and anxiety situations. Although there are noradrenergic terminals in the dPAG, few studies have investigated the role of noradrenaline (NA) in the dPAG on anxiety modulation. The aim of this study was to evaluate the effect of NA microinjection into the dPAG of rats subjected to two animal models of anxiety, the elevated plus-maze and the Vogel conflict test. Male Wistar rats implanted with a guide cannula aimed at the dPAG received microinjections of NA (3, 15, or 45 nmol/0.05 mu l) or artificial cerebral spinal fluid into the dPAG immediately before being exposed to the elevated plus-maze or the Vogel conflict test. NA increased the exploration of the open arms and the number of enclosed arm entries in the elevated plus-maze. The increase in open arm exploration remained significant after being subjected to an analysis of covariance using the latter variable as covariate. Moreover, the NA microinjection into the dPAG did not increase general exploratory activity of animals subjected to the open-field test, indicating that the increase in open arm exploration cannot be attributed to a nonspecific increase in exploratory activity. In the Vogel test, the NA microinjection into the dPAG increased the number of punished licks without changing the number of nonpunished licks or interfering with the tail-flick test. The results, therefore, indicate that the NA microinjection into the dPAG produces anxiolytic-like effects, suggesting its possible involvement in the anxiety modulation. Behavioural Pharmacology 20:252-259 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
The present study compared two heating methods currently used for antigen retrieval (AR) immunostaining: the microwave oven and the steam cooker. Myosin-V, a molecular motor involved in vesicle transport, was used as a neuronal marker in honeybee Apis mellifera brains fixed in formalin. Overall, the steam cooker showed the most satisfactory AR results. At 100 degrees C, tissue morphology was maintained and revealed epitope recovery, while evaporation of the AR solution was markedly reduced; this is important for stabilizing the sodium citrate molarity of the AR buffer and reducing background effects. Standardization of heat-mediated AR of formalin-fixed and paraffin-embedded tissue sections results in more reliable immunostaining of the honeybee brain.
Resumo:
Objectives To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in `flow-free` models. Methods 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PR F) settings. Results Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Conclusions Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. Copyright (C) 2010 ISUOC. Published by John Wiley & Sons, Ltd.
Resumo:
SETTING: Five medical schools in three cities in Rio de Janeiro State, Brazil, with different tuberculosis (TB) incidence rates. OBJECTIVE: To evaluate the prevalence of the booster phenomenon and its associated factors in a voting universally BCG-vaccinated TB-exposed population. DESIGN: A two-step tuberculin skin test (TST) was performed among undergraduate medical students. Boosting was defined as an induration >= 10 mm in the second TST (TST2), with an increase of at least 6 mm over the first TST (TST1). The association of boosting with independent variables was evaluated using multivariate analysis. RESULTS: Of the 764 participants (mean age 21.9 +/- 2.7 years), 672 (87.9%) had a BCG scar. The overall booster SUMMARY phenomenon prevalence was 8.4% (95%CI 6.5-10.6). Boosting was associated with TST1 reactions of 1-9 mm (aOR 2.5, 95%CI 1.04-5.9) and with BCG vaccination, mostly after infancy, i.e., after age two years (aOR 9.1, 95%,CI 1.2-70.7). CONCLUSION: The prevalence of the booster phenomenon was high. A two-step TST in young BCG-vaccinated populations, especially in those with TST1 reactions of 1-9 mm, can avoid misdiagnosis as a false conversion and potentially reduce unnecessary treatment for latent TB infection.