999 resultados para Tunable luminescence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new polyacid derivative ligands of thienyl-substituted terpyridine analogues, N,N,N-1,N-1-[4'-(2"'-thienyl)-2,2':6',2"-terpyridine-6,6"-diyl]bis(methylenenitrilo) tetrakis(acetic acid) (TTTA) and N,N,N-1,N-1-[2,6-bis(3'-amino-methyl-1'-pyrazolyl)-4-(2"-thienyl)pyridine] tetrakis(acetic acid) (BTTA), were synthesized, and the luminescence properties of their Eu3+ and Tb3+ chelates were investigated. The Eu3+ chelates of the two ligands are strongly luminescent having luminescence quantum yields of 0.150 (TTTA-Eu3+) and 0.114 (BTTA-Eu3+), and lifetimes of 1.284 ms (TTTA-Eu3+) and 1.352 ms (BTTA-Eu3+), whereas their Tb3+ chelates are weakly luminescent. The TTTA-Eu3+ chelate was used for streptavidin (SA) labeling, and the labeled SA was used for time-resolved fluoroirnmunoassay of insulin in human sera. The method gives the detection limits of 33 pg ml(-1). (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poolton, Nigel; Ozanyan, K.B.; Wallinga, J.; Murray, A.S., (2002) 'Electrons in feldspar II: a consideration of the influence of conduction band-tail states on luminescence processes', Physics and Chemistry of Minerals 29(3) pp.217-225 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poolton, Nigel; Hamilton, B.; Evans, D.A., (2005) 'Synchrotron-laser pump-probe luminescence spectroscopy: Correlation of electronic defect states with x-ray absorption in wide-gap solids', Journal of Physics D: Applied Physics 38 pp.1478-1484 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this project was to prepare a range of 4-substituted 3-(2H)-furanones, and to investigate the relationship between their molecular structures and photoluminescence properties. The effects of substituents and conjugated linker unit were also investigated. After generation of the key 3(2H)-furanone heterocycle, extension of the conjugated framework at the C-4 position was achieved through Pd(0)-catalysed coupling reactions. Chapter one of the thesis comprises a review of the relavent literature and is split into three sections. These include information about the prevalence of 3-(2H)-furanones as natural products and synthetic routes to 3-(2H)-furanones in general. The synthetic routes are divided according to the synthetic precursor employed. The final section of chapter one outlines the fundamental principles and application of photoluminescence to organic compounds in general. Chapter two contains the results of the research achieved in the course of this work and a discussion of the findings. Two routes were successfully employed to generate 4-unsubstituted 3-(2H)-furanone moieties: (i) base induced cyclisation of hydroxyenones and (ii) isoxazole chemistry. A number of methods which proved ineffective in the production of furanones with the desired substitution pattern are also detailed. The majority of this study was focused on the introduction of substituents at the C-4 position of the 3-(2H)-furanone ring. This was achieved through the use of Sonogashira and Suzuki cross coupling protocols for Pd(0) catalysed C-C bond formation. The further functionalisation of some compounds was performed using transfer hydrogenation and “click chemistry” methodologies. Finally, the photophysical properties of 3-(2H)-furanones prepared in this project are discussed and the effect of substitution patterns in a complementary “push push” and “push pull” manner have also been investigated. All the experimental data and details of the synthetic methods employed, for the compounds prepared during the course of this research is contained in chapter three together with the spectroscopic and analytical properties of the compounds prepared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the relationship between NF-κB activity, cytokine levels, and pain sensitivities in a rodent model of osteoarthritis (OA). METHODS: OA was induced in transgenic NF-κB-luciferase reporter mice via intraarticular injection of monosodium iodoacetate (MIA). Using luminescence imaging we evaluated the temporal kinetics of NF-κB activity and its relationship to the development of pain sensitivities and serum cytokine levels in this model. RESULTS: MIA induced a transient increase in joint-related NF-κB activity at early time points (day 3 after injection) and an associated biphasic pain response (mechanical allodynia). NF-κB activity, serum interleukin-6 (IL-6), IL-1β, and IL-10 levels accounted for ∼75% of the variability in pain-related mechanical sensitivities in this model. Specifically, NF-κB activity was strongly correlated with mechanical allodynia and serum IL-6 levels in the inflammatory pain phase of this model (day 3), while serum IL-1β was strongly correlated with pain sensitivities in the chronic pain phase of the model (day 28). CONCLUSION: Our findings suggest that NF-κB activity, IL-6, and IL-1β may play distinct roles in pain sensitivity development in this model of arthritis and may distinguish the acute pain phase from the chronic pain phase. This study establishes luminescence imaging of NF-κB activity as a novel imaging biomarker of pain sensitivities in this model of OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radiative processes associated with fluorophores and other radiating systems can be profoundly modified by their interaction with nanoplasmonic structures. Extreme electromagnetic environments can be created in plasmonic nanostructures or nanocavities, such as within the nanoscale gap region between two plasmonic nanoparticles, where the illuminating optical fields and the density of radiating modes are dramatically enhanced relative to vacuum. Unraveling the various mechanisms present in such coupled systems, and their impact on spontaneous emission and other radiative phenomena, however, requires a suitably reliable and precise means of tuning the plasmon resonance of the nanostructure while simultaneously preserving the electromagnetic characteristics of the enhancement region. Here, we achieve this control using a plasmonic platform consisting of colloidally synthesized nanocubes electromagnetically coupled to a metallic film. Each nanocube resembles a nanoscale patch antenna (or nanopatch) whose plasmon resonance can be changed independent of its local field enhancement. By varying the size of the nanopatch, we tune the plasmonic resonance by ∼ 200 nm, encompassing the excitation, absorption, and emission spectra corresponding to Cy5 fluorophores embedded within the gap region between nanopatch and film. By sweeping the plasmon resonance but keeping the field enhancements roughly fixed, we demonstrate fluorescence enhancements exceeding a factor of 30,000 with detector-limited enhancements of the spontaneous emission rate by a factor of 74. The experiments are supported by finite-element simulations that reveal design rules for optimized fluorescence enhancement or large Purcell factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-lapse fluorescence microscopy is an important tool for measuring in vivo gene dynamics in single cells. However, fluorescent proteins are limited by slow chromophore maturation times and the cellular autofluorescence or phototoxicity that arises from light excitation. An alternative is luciferase, an enzyme that emits photons and is active upon folding. The photon flux per luciferase is significantly lower than that for fluorescent proteins. Thus time-lapse luminescence microscopy has been successfully used to track gene dynamics only in larger organisms and for slower processes, for which more total photons can be collected in one exposure. Here we tested green, yellow, and red beetle luciferases and optimized substrate conditions for in vivo luminescence. By combining time-lapse luminescence microscopy with a microfluidic device, we tracked the dynamics of cell cycle genes in single yeast with subminute exposure times over many generations. Our method was faster and in cells with much smaller volumes than previous work. Fluorescence of an optimized reporter (Venus) lagged luminescence by 15-20 min, which is consistent with its known rate of chromophore maturation in yeast. Our work demonstrates that luciferases are better than fluorescent proteins at faithfully tracking the underlying gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solar cell relies on its ability to turn photons into current. Because short wavelength photons are typically absorbed near the top surface of a cell, the generated charge carriers recombine before being collected. But when a layer of quantum dots (nanoscale semiconductor particles) is placed on top of the cell, it absorbs short wavelength photons and emits them into the cell at longer wavelengths, which enables more efficient carrier collection. However, the resulting power conversion efficiency of the system depends critically on the quantum dot luminescence efficiency – the nature of this relationship was previously unknown. Our calculations suggest that a quantum dot layer must have high luminescence efficiency (at least 80%) to improve the current output of existing photovoltaic (PV) cells; otherwise, it may worsen the cell’s efficiency. Our quantum dot layer (using quantum dots with over 85% quantum yield) slightly reduced the efficiency of our PV cells. We observed a decrease in short circuit current of a commercial-grade cell from 0.1977 A to 0.1826 A, a 7.6% drop, suggesting that improved optical coupling from the quantum dot emission into the solar cell is needed. With better optical coupling, we predict current enhancements between ~6% and ~8% for a solar cell that already has an antireflection coating. Such improvements could have important commercial impacts if the coating could be deployed in a scalable fashion.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: