782 resultados para Trigeminal Ganglion
Resumo:
The temporally encoded information obtained by vibrissal touch could be decoded “passively,” involving only input-driven elements, or “actively,” utilizing intrinsically driven oscillators. A previous study suggested that the trigeminal somatosensory system of rats does not obey the bottom-up order of activation predicted by passive decoding. Thus, we have tested whether this system obeys the predictions of active decoding. We have studied cortical single units in the somatosensory cortices of anesthetized rats and guinea pigs and found that about a quarter of them exhibit clear spontaneous oscillations, many of them around whisking frequencies (≈10 Hz). The frequencies of these oscillations could be controlled locally by glutamate. These oscillations could be forced to track the frequency of induced rhythmic whisker movements at a stable, frequency-dependent, phase difference. During these stimulations, the response intensities of multiunits at the thalamic recipient layers of the cortex decreased, and their latencies increased, with increasing input frequency. These observations are consistent with thalamocortical loops implementing phase-locked loops, circuits that are most efficient in decoding temporally encoded information like that obtained by active vibrissal touch. According to this model, and consistent with our results, populations of thalamic “relay” neurons function as phase “comparators” that compare cortical timing expectations with the actual input timing and represent the difference by their population output rate.
Resumo:
Axonal guidance is key to the formation of neuronal circuitry. Semaphorin 3A (Sema 3A; previously known as semaphorin III, semaphorin D, and collapsin-1), a secreted subtype of the semaphorin family, is an important axonal guidance molecule in vitro and in vivo. The molecular mechanisms of the repellent activity of semaphorins are, however, poorly understood. We have now found that the secreted semaphorins contain a short sequence of high homology to hanatoxin, a tarantula K+ and Ca2+ ion channel blocker. Point mutations in the hanatoxin-like sequence of Sema 3A reduce its capacity to repel embryonic dorsal root ganglion axons. Sema 3A growth cone collapse activity is inhibited by hanatoxin, general Ca2+ channel blockers, a reduction in extracellular or intracellular Ca2+, and a calmodulin inhibitor, but not by K+ channel blockers. Our data support an important role for Ca2+ in mediating the Sema 3A response and suggest that Sema 3A may produce its effects by causing the opening of Ca2+ channels.
Resumo:
Cocaine- and amphetamine-regulated transcript (CART) is widely expressed in the central nervous system. Recent studies have pointed to a role for CART-derived peptides in inhibiting feeding behavior. Although these actions have generally been attributed to hypothalamic CART, it remains to be determined whether additional CART pathways exist that link signals from the gastrointestinal tract to the central control of food intake. In the present study, we have investigated the presence of CART in the rat vagus nerve and nodose ganglion. In the viscerosensory nodose ganglion, half of the neuron profiles expressed CART and its predicted peptide, as determined by in situ hybridization and immunohistochemistry. CART expression was markedly attenuated after vagotomy, but no modulation was observed after food restriction or high-fat regimes. A large proportion of CART-labeled neuron profiles also expressed cholecystokinin A receptor mRNA. CART-peptide-like immunoreactivity was transported in the vagus nerve and found in a dense fiber plexus in the nucleus tractus solitarii. Studies on CART in the spinal somatosensory system revealed strong immunostaining of the dorsal horn but only a small number of stained cell bodies in dorsal root ganglia. The present results suggest that CART-derived peptides are present in vagal afferent neurons sensitive to cholecystokinin, suggesting that the role of these peptides in feeding may be explained partly by mediating postprandial satiety effects of cholecystokinin.
Resumo:
Muscarinic acetylcholine receptors are members of the G protein-coupled receptor superfamily expressed in neurons, cardiomyocytes, smooth muscle, and a variety of epithelia. Five subtypes of muscarinic acetylcholine receptors have been discovered by molecular cloning, but their pharmacological similarities and frequent colocalization make it difficult to assign functional roles for individual subtypes in specific neuronal responses. We have used gene targeting by homologous recombination in embryonic stem cells to produce mice lacking the m1 receptor. These mice show no obvious behavioral or histological defects, and the m2, m3, and m4 receptors continue to be expressed in brain with no evidence of compensatory induction. However, the robust suppression of the M-current potassium channel activity evoked by muscarinic agonists in sympathetic ganglion neurons is completely lost in m1 mutant mice. In addition, both homozygous and heterozygous mutant mice are highly resistant to the seizures produced by systemic administration of the muscarinic agonist pilocarpine. Thus, the m1 receptor subtype mediates M current modulation in sympathetic neurons and induction of seizure activity in the pilocarpine model of epilepsy.
Resumo:
CB1, a cannabinoid receptor enriched in neuronal tissue, was found in high concentration in retinas of rhesus monkey, mouse, rat, chick, goldfish, and tiger salamander by using a subtype-specific polyclonal antibody. Immunolabeling was detected in the two synaptic layers of the retina, the inner and outer plexiform layers, of all six species examined. In the outer plexiform layer, CB1 was located in and/or on cone pedicles and rod spherules. Labeling was detected in some amacrine cells of all species and in the ganglion cells and ganglion cell axons of all species except fish. In addition, sparse labeling was found in the inner and/or outer segments of the photoreceptors of monkey, mouse, rat, and chick. Using GC/MS to detect possible endogenous cannabinoids, we found 3 nmol of 2-arachidonylglycerol per g of tissue, but no anandamide was detectable. Cannabinoid receptor agonists induced a dramatic reduction in the amplitude of voltage-gated L-type calcium channel currents in identified retinal bipolar cells. The presence and distribution of the CB1 receptor, the large amounts of 2-arachidonylglycerol found, and the effects of cannabinoids on calcium channel activity in bipolar cells suggest a substantive role for an endogenous cannabinoid signaling system in retinal physiology, and perhaps vision in general.
Resumo:
Assessing the reliability of neuronal spike trains is fundamental to an understanding of the neural code. We measured the reproducibility of retinal responses to repeated visual stimuli. In both tiger salamander and rabbit, the retinal ganglion cells responded to random flicker with discrete, brief periods of firing. For any given cell, these firing events covered only a small fraction of the total stimulus time, often less than 5%. Firing events were very reproducible from trial to trial: the timing jitter of individual spikes was as low as 1 msec, and the standard deviation in spike count was often less than 0.5 spikes. Comparing the precision of spike timing to that of the spike count showed that the timing of a firing event conveyed several times more visual information than its spike count. This sparseness and precision were general characteristics of ganglion cell responses, maintained over the broad ensemble of stimulus waveforms produced by random flicker, and over a range of contrasts. Thus, the responses of retinal ganglion cells are not properly described by a firing probability that varies continuously with the stimulus. Instead, these neurons elicit discrete firing events that may be the fundamental coding symbols in retinal spike trains.
Resumo:
The neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT3) support the survival of subpopulations of primary sensory neurons with defined and distinct physiological characteristics. Only a few genes have been identified as being differentially expressed in these subpopulations, and not much is known about the nature of the molecules involved in the processing of sensory information in NGF-dependent nociceptive neurons or NT3-dependent proprioceptive neurons. We devised a simple dorsal root ganglion (DRG) explant culture system, allowing the selection of neuronal populations preferentially responsive to NGF or NT3. The reliability of this assay was first monitored by the differential expression of the NGF and NT3 receptors trkA and trkC, as well as that of neuropeptides and calcium-binding proteins. We then identified four differentially expressed sodium channels, two enriched in the NGF population and two others in the NT3 population. Finally, using an optimized RNA fingerprinting protocol, we identified 20 additional genes, all differentially expressed in DRG explants cultured with NGF or NT3. This approach thus allows the identification of large number of genes expressed in subpopulations of primary sensory neurons and opens the possibility of studying the molecular mechanisms of nociception and proprioception.
Resumo:
Proteins of the kinesin superfamily define a class of microtubule-dependent motors that play crucial roles in cell division and intracellular transport. To study the molecular mechanism of axonal transport, a cDNA encoding a new kinesin-like protein called KIF3C was cloned from a mouse brain cDNA library. Sequence and secondary structure analysis revealed that KIF3C is a member of the KIF3 family. In contrast to KIF3A and KIF3B, Northern and Western analysis indicated that KIF3C expression is highly enriched in neural tissues such as brain, spinal cord, and retina. When anti-KIF3C antibodies were used to stain the cerebellum, the strongest signal came from the cell bodies and dendrites of Purkinje cells. In retina, anti-KIF3C mainly stains the ganglion cells. Immunolocalization showed that the KIF3C motor in spinal cord and sciatic nerve is mainly localized in cytoplasm. In spinal cord, the KIF3C staining was punctate; double labeling with anti-giantin and anti-KIF3C showed a clear concentration of the motor protein in the Golgi complex. Staining of ligated sciatic nerves demonstrated that the KIF3C motor accumulated at the proximal side of the ligated nerve, which suggests that KIF3C is an anterograde motor. Immunoprecipitation experiments revealed that KIF3C and KIF3A, but not KIF3B, were coprecipitated. These data, combined with previous data from other labs, indicate that KIF3C and KIF3B are “variable” subunits that associate with a common KIF3A subunit, but not with each other. Together these results suggest that KIF3 family members combinatorially associate to power anterograde axonal transport.
Resumo:
The cell adhesion molecule L1 is a potent inducer of neurite outgrowth and it has been implicated in X-linked hydrocephalus and related neurological disorders. To investigate the mechanisms of neurite outgrowth stimulated by L1, attempts were made to identify the neuritogenic sites in L1. Fusion proteins containing different segments of the extracellular region of L1 were prepared and different neuronal cells were assayed on substrate-coated fusion proteins. Interestingly, both immunoglobulin (Ig)-like domains 2 and 6 (Ig2, Ig6) promoted neurite outgrowth from dorsal root ganglion cells, whereas neural retinal cells responded only to Ig2. L1 Ig2 contains a previously identified homophilic binding site, whereas L1 Ig6 contains an Arg-Gly-Asp (RGD) sequence. The neuritogenic activity of Ig6 was abrogated by mutations in the RGD site. The addition of RGD-containing peptides also inhibited the promotion of neurite outgrowth from dorsal root ganglion cells by glutathione S-transferase-Ig6, implicating the involvement of an integrin. The monoclonal antibody LM609 against αvβ3 integrin, but not an anti-β1 antibody, inhibited the neuritogenic effects of Ig6. These data thus provide the first evidence that the RGD motif in L1 Ig6 is capable of promoting neurite outgrowth via interaction with the αvβ3 integrin on neuronal cells.
Resumo:
Immunocytochemistry and in vitro studies have suggested that the ERM (ezrin-radixin-moesin) protein, radixin, may have a role in nerve growth cone motility. We tested the in situ role of radixin in chick dorsal root ganglion growth cones by observing the effects of its localized and acute inactivation. Microscale chromophore-assisted laser inactivation (micro-CALI) of radixin in growth cones causes a 30% reduction of lamellipodial area within the irradiated region whereas all control treatments did not affect lamellipodia. Micro-CALI of radixin targeted to the middle of the leading edge often split growth cones to form two smaller growth cones during continued forward movement (>80%). These findings suggest a critical role for radixin in growth cone lamellipodia that is similar to ezrin function in pseudopodia of transformed fibroblasts. They are consistent with radixin linking actin filaments to each other or to the membrane during motility.
Resumo:
Somatotopic maps in the cortex and the thalamus of adult monkeys and humans reorganize in response to altered inputs. After loss of the sensory afferents from the forelimb in monkeys because of transection of the dorsal columns of the spinal cord, therapeutic amputation of an arm or transection of the dorsal roots of the peripheral nerves, the deprived portions of the hand and arm representations in primary somatosensory cortex (area 3b), become responsive to inputs from the face and any remaining afferents from the arm. Cortical and subcortical mechanisms that underlie this reorganization are uncertain and appear to be manifold. Here we show that the face afferents from the trigeminal nucleus of the brainstem sprout and grow into the cuneate nucleus in adult monkeys after lesions of the dorsal columns of the spinal cord or therapeutic amputation of an arm. This growth may underlie the large-scale expansion of the face representation into the hand region of somatosensory cortex that follows such deafferentations.
Resumo:
Metachromatic leukodystrophy is a lysosomal sphingolipid storage disorder caused by the deficiency of arylsulfatase A. The disease is characterized by progressive demyelination, causing various neurologic symptoms. Since no naturally occurring animal model of the disease is available, we have generated arylsulfatase A-deficient mice. Deficient animals store the sphingolipid cerebroside-3-sulfate in various neuronal and nonneuronal tissues. The storage pattern is comparable to that of affected humans, but gross defects of white matter were not observed up to the age of 2 years. A reduction of axonal cross-sectional area and an astrogliosis were observed in 1-year-old mice; activation of microglia started at 1 year and was generalized at 2 years. Purkinje cell dendrites show an altered morphology. In the acoustic ganglion numbers of neurons and myelinated fibers are severely decreased, which is accompanied by a loss of brainstem auditory-evoked potentials. Neurologic examination reveals significant impairment of neuromotor coordination.
Resumo:
Spinal sensory (dorsal root ganglion; DRG) neurons display slowly inactivating, tetrodotoxin-resistant (TTX-R), and rapidly inactivating, TTX-sensitive (TTX-S) Na currents. Attenuation of the TTX-R Na current and enhancement of TTX-S Na current have been demonstrated in cutaneous afferent DRG neurons in the adult rat after axotomy and may underlie abnormal bursting. We show here that steady-state levels of transcripts encoding the α-SNS subunit, which is associated with a slowly inactivating, TTX-R current when expressed in oocytes, are reduced significantly 5 days following axotomy of DRG neurons, and continue to be expressed at reduced levels, even after 210 days. Steady-state levels of α-III transcripts, which are present at low levels in control DRG neurons, show a pattern of transiently increased expression. In situ hybridization using α-SNS- and α-III-specific riboprobes showed a decreased signal for α-SNS, and an increased signal for α-III, in both large and small DRG neurons following axotomy. Reduced levels of α-SNS may explain the selective loss of slowly inactivating, TTX-R current. The abnormal electrophysiological properties of DRG neurons following axonal injury thus appear to reflect a switch in Na channel gene expression.
Resumo:
Mutation in human ZIC2, a zinc finger protein homologous to Drosophila odd-paired, causes holoprosencephaly (HPE), which is a common, severe malformation of the brain in humans. However, the pathogenesis is largely unknown. Here we show that reduced expression (knockdown) of mouse Zic2 causes neurulation delay, resulting in HPE and spina bifida. Differentiation of the most dorsal neural plate, which gives rise to both roof plate and neural crest cells, also was delayed as indicated by the expression lag of a roof plate marker, Wnt3a. In addition the development of neural crest derivatives such as dorsal root ganglion was impaired. These results suggest that the Zic2 expression level is crucial for the timing of neurulation. Because the Zic2 knockdown mouse is the first mutant with HPE and spina bifida to survive to the perinatal period, the mouse will promote analyses of not only the neurulation but also the pathogenesis of human HPE.
Resumo:
The semaphorins comprise a large family of membrane-bound and secreted proteins, some of which have been shown to function in axon guidance. We have cloned a transmembrane semaphorin, Sema W, that belongs to the class IV subgroup of the semaphorin family. The mouse and rat forms of Sema W show 97% amino acid sequence identity with each other, and each shows about 91% identity with the human form. The gene for Sema W is divided into 15 exons, up to 4 of which are absent in the human cDNAs that we sequenced. Unlike many other semaphorins, Sema W is expressed at low levels in the developing embryo but was found to be expressed at high levels in the adult central nervous system and lung. Functional studies with purified membrane fractions from COS7 cells transfected with a Sema W expression plasmid showed that Sema W has growth-cone collapse activity against retinal ganglion-cell axons, indicating that vertebrate transmembrane semaphorins, like secreted semaphorins, can collapse growth cones. Genetic mapping of human SEMAW with human/hamster radiation hybrids localized the gene to chromosome 2p13. Genetic mapping of mouse Semaw with mouse/hamster radiation hybrids localized the gene to chromosome 6, and physical mapping placed the gene on bacteria artificial chromosomes carrying microsatellite markers D6Mit70 and D6Mit189. This localization places Semaw within the locus for motor neuron degeneration 2, making it an attractive candidate gene for this disease.