864 resultados para Tree based intercrop systems
Resumo:
This article describes a knowledge-based method for generating multimedia descriptions that summarize the behavior of dynamic systems. We designed this method for users who monitor the behavior of a dynamic system with the help of sensor networks and make decisions according to prefixed management goals. Our method generates presentations using different modes such as text in natural language, 2D graphics and 3D animations. The method uses a qualitative representation of the dynamic system based on hierarchies of components and causal influences. The method includes an abstraction generator that uses the system representation to find and aggregate relevant data at an appropriate level of abstraction. In addition, the method includes a hierarchical planner to generate a presentation using a model with dis- course patterns. Our method provides an efficient and flexible solution to generate concise and adapted multimedia presentations that summarize thousands of time series. It is general to be adapted to differ- ent dynamic systems with acceptable knowledge acquisition effort by reusing and adapting intuitive rep- resentations. We validated our method and evaluated its practical utility by developing several models for an application that worked in continuous real time operation for more than 1 year, summarizing sen- sor data of a national hydrologic information system in Spain.
Resumo:
Proof carrying code (PCC) is a general is originally a roof in ñrst-order logic of certain vermethodology for certifying that the execution of an un- ification onditions and the checking process involves trusted mobile code is safe. The baste idea is that the ensuring that the certifícate is indeed a valid ñrst-order code supplier attaches a certifícate to the mobile code proof. which the consumer checks in order to ensure that the The main practical difñculty of PCC techniques is in code is indeed safe. The potential benefit is that the generating safety certiñeates which at the same time: i) consumer's task is reduced from the level of proving to allow expressing interesting safety properties, ii) can be the level of checking. Recently, the abstract interpre- generated automatically and, iii) are easy and efficient tation techniques developed, in logic programming have to check. In [1], the abstract interpretation techniques been proposed as a basis for PCC. This extended ab- [5] developed in logic programming1 are proposed as stract reports on experiments which illustrate several is- a basis for PCC. They offer a number of advantages sues involved in abstract interpretation-based certifica- for dealing with the aforementioned issues. In particution. First, we describe the implementation of our sys- lar, the xpressiveness of existing abstract domains will tem in the context of CiaoPP: the preprocessor of the be implicitly available in abstract interpretation-based Ciao multi-paradigm programming system. Then, by code certification to deñne a wide range of safety propermeans of some experiments, we show how code certifi- ties. Furthermore, the approach inherits the automation catión is aided in the implementation of the framework. and inference power of the abstract interpretation en- Finally, we discuss the application of our method within gines used in (Constraint) Logic Programming, (C)LP. the área, of pervasive systems
Resumo:
We argüe that in order to exploit both Independent And- and Or-parallelism in Prolog programs there is advantage in recomputing some of the independent goals, as opposed to all their solutions being reused. We present an abstract model, called the Composition- Tree, for representing and-or parallelism in Prolog Programs. The Composition-tree closely mirrors sequential Prolog execution by recomputing some independent goals rather than fully re-using them. We also outline two environment representation techniques for And-Or parallel execution of full Prolog based on the Composition-tree model abstraction. We argüe that these techniques have advantages over earlier proposals for exploiting and-or parallelism in Prolog.
Resumo:
Proof carrying code is a general methodology for certifying that the execution of an untrusted mobile code is safe, according to a predefined safety policy. The basic idea is that the code supplier attaches a certifícate (or proof) to the mobile code which, then, the consumer checks in order to ensure that the code is indeed safe. The potential benefit is that the consumer's task is reduced from the level of proving to the level of checking, a much simpler task. Recently, the abstract interpretation techniques developed in logic programming have been proposed as a basis for proof carrying code [1]. To this end, the certifícate is generated from an abstract interpretation-based proof of safety. Intuitively, the verification condition is extracted from a set of assertions guaranteeing safety and the answer table generated during the analysis. Given this information, it is relatively simple and fast to verify that the code does meet this proof and so its execution is safe. This extended abstract reports on experiments which illustrate several issues involved in abstract interpretation-based code certification. First, we describe the implementation of our system in the context of CiaoPP: the preprocessor of the Ciao multi-paradigm (constraint) logic programming system. Then, by means of some experiments, we show how code certification is aided in the implementation of the framework. Finally, we discuss the application of our method within the área of pervasive systems which may lack the necessary computing resources to verify safety on their own. We herein illustrate the relevance of the information inferred by existing cost analysis to control resource usage in this context. Moreover, since the (rather complex) analysis phase is replaced by a simpler, efficient checking process at the code consumer side, we believe that our abstract interpretation-based approach to proof-carrying code becomes practically applicable to this kind of systems.
Resumo:
In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.
Resumo:
The term "Logic Programming" refers to a variety of computer languages and execution models which are based on the traditional concept of Symbolic Logic. The expressive power of these languages offers promise to be of great assistance in facing the programming challenges of present and future symbolic processing applications in Artificial Intelligence, Knowledge-based systems, and many other areas of computing. The sequential execution speed of logic programs has been greatly improved since the advent of the first interpreters. However, higher inference speeds are still required in order to meet the demands of applications such as those contemplated for next generation computer systems. The execution of logic programs in parallel is currently considered a promising strategy for attaining such inference speeds. Logic Programming in turn appears as a suitable programming paradigm for parallel architectures because of the many opportunities for parallel execution present in the implementation of logic programs. This dissertation presents an efficient parallel execution model for logic programs. The model is described from the source language level down to an "Abstract Machine" level suitable for direct implementation on existing parallel systems or for the design of special purpose parallel architectures. Few assumptions are made at the source language level and therefore the techniques developed and the general Abstract Machine design are applicable to a variety of logic (and also functional) languages. These techniques offer efficient solutions to several areas of parallel Logic Programming implementation previously considered problematic or a source of considerable overhead, such as the detection and handling of variable binding conflicts in AND-Parallelism, the specification of control and management of the execution tree, the treatment of distributed backtracking, and goal scheduling and memory management issues, etc. A parallel Abstract Machine design is offered, specifying data areas, operation, and a suitable instruction set. This design is based on extending to a parallel environment the techniques introduced by the Warren Abstract Machine, which have already made very fast and space efficient sequential systems a reality. Therefore, the model herein presented is capable of retaining sequential execution speed similar to that of high performance sequential systems, while extracting additional gains in speed by efficiently implementing parallel execution. These claims are supported by simulations of the Abstract Machine on sample programs.
Resumo:
Multi-user videoconferencing systems offer communication between more than two users, who are able to interact through their webcams, microphones and other components. The use of these systems has been increased recently due to, on the one hand, improvements in Internet access, networks of companies, universities and houses, whose available bandwidth has been increased whilst the delay in sending and receiving packets has decreased. On the other hand, the advent of Rich Internet Applications (RIA) means that a large part of web application logic and control has started to be implemented on the web browsers. This has allowed developers to create web applications with a level of complexity comparable to traditional desktop applications, running on top of the Operating Systems. More recently the use of Cloud Computing systems has improved application scalability and involves a reduction in the price of backend systems. This offers the possibility of implementing web services on the Internet with no need to spend a lot of money when deploying infrastructures and resources, both hardware and software. Nevertheless there are not many initiatives that aim to implement videoconferencing systems taking advantage of Cloud systems. This dissertation proposes a set of techniques, interfaces and algorithms for the implementation of videoconferencing systems in public and private Cloud Computing infrastructures. The mechanisms proposed here are based on the implementation of a basic videoconferencing system that runs on the web browser without any previous installation requirements. To this end, the development of this thesis starts from a RIA application with current technologies that allow users to access their webcams and microphones from the browser, and to send captured data through their Internet connections. Furthermore interfaces have been implemented to allow end users to participate in videoconferencing rooms that are managed in different Cloud provider servers. To do so this dissertation starts from the results obtained from the previous techniques and backend resources were implemented in the Cloud. A traditional videoconferencing service which was implemented in the department was modified to meet typical Cloud Computing infrastructure requirements. This allowed us to validate whether Cloud Computing public infrastructures are suitable for the traffic generated by this kind of system. This analysis focused on the network level and processing capacity and stability of the Cloud Computing systems. In order to improve this validation several other general considerations were taken in order to cover more cases, such as multimedia data processing in the Cloud, as research activity has increased in this area in recent years. The last stage of this dissertation is the design of a new methodology to implement these kinds of applications in hybrid clouds reducing the cost of videoconferencing systems. Finally, this dissertation opens up a discussion about the conclusions obtained throughout this study, resulting in useful information from the different stages of the implementation of videoconferencing systems in Cloud Computing systems. RESUMEN Los sistemas de videoconferencia multiusuario permiten la comunicación entre más de dos usuarios que pueden interactuar a través de cámaras de video, micrófonos y otros elementos. En los últimos años el uso de estos sistemas se ha visto incrementado gracias, por un lado, a la mejora de las redes de acceso en las conexiones a Internet en empresas, universidades y viviendas, que han visto un aumento del ancho de banda disponible en dichas conexiones y una disminución en el retardo experimentado por los datos enviados y recibidos. Por otro lado también ayudó la aparación de las Aplicaciones Ricas de Internet (RIA) con las que gran parte de la lógica y del control de las aplicaciones web comenzó a ejecutarse en los mismos navegadores. Esto permitió a los desarrolladores la creación de aplicaciones web cuya complejidad podía compararse con la de las tradicionales aplicaciones de escritorio, ejecutadas directamente por los sistemas operativos. Más recientemente el uso de sistemas de Cloud Computing ha mejorado la escalabilidad y el abaratamiento de los costes para sistemas de backend, ofreciendo la posibilidad de implementar servicios Web en Internet sin la necesidad de grandes desembolsos iniciales en las áreas de infraestructuras y recursos tanto hardware como software. Sin embargo no existen aún muchas iniciativas con el objetivo de realizar sistemas de videoconferencia que aprovechen las ventajas del Cloud. Esta tesis doctoral propone un conjunto de técnicas, interfaces y algoritmos para la implentación de sistemas de videoconferencia en infraestructuras tanto públicas como privadas de Cloud Computing. Las técnicas propuestas en la tesis se basan en la realización de un servicio básico de videoconferencia que se ejecuta directamente en el navegador sin la necesidad de instalar ningún tipo de aplicación de escritorio. Para ello el desarrollo de esta tesis parte de una aplicación RIA con tecnologías que hoy en día permiten acceder a la cámara y al micrófono directamente desde el navegador, y enviar los datos que capturan a través de la conexión de Internet. Además se han implementado interfaces que permiten a usuarios finales la participación en salas de videoconferencia que se ejecutan en servidores de proveedores de Cloud. Para ello se partió de los resultados obtenidos en las técnicas anteriores de ejecución de aplicaciones en el navegador y se implementaron los recursos de backend en la nube. Además se modificó un servicio ya existente implementado en el departamento para adaptarlo a los requisitos típicos de las infraestructuras de Cloud Computing. Alcanzado este punto se procedió a analizar si las infraestructuras propias de los proveedores públicos de Cloud Computing podrían soportar el tráfico generado por los sistemas que se habían adaptado. Este análisis se centró tanto a nivel de red como a nivel de capacidad de procesamiento y estabilidad de los sistemas. Para los pasos de análisis y validación de los sistemas Cloud se tomaron consideraciones más generales para abarcar casos como el procesamiento de datos multimedia en la nube, campo en el que comienza a haber bastante investigación en los últimos años. Como último paso se ideó una metodología de implementación de este tipo de aplicaciones para que fuera posible abaratar los costes de los sistemas de videoconferencia haciendo uso de clouds híbridos. Finalmente en la tesis se abre una discusión sobre las conclusiones obtenidas a lo largo de este amplio estudio, obteniendo resultados útiles en las distintas etapas de implementación de los sistemas de videoconferencia en la nube.
Resumo:
Detecting user affect automatically during real-time conversation is the main challenge towards our greater aim of infusing social intelligence into a natural-language mixed-initiative High-Fidelity (Hi-Fi) audio control spoken dialog agent. In recent years, studies on affect detection from voice have moved on to using realistic, non-acted data, which is subtler. However, it is more challenging to perceive subtler emotions and this is demonstrated in tasks such as labelling and machine prediction. This paper attempts to address part of this challenge by considering the role of user satisfaction ratings and also conversational/dialog features in discriminating contentment and frustration, two types of emotions that are known to be prevalent within spoken human-computer interaction. However, given the laboratory constraints, users might be positively biased when rating the system, indirectly making the reliability of the satisfaction data questionable. Machine learning experiments were conducted on two datasets, users and annotators, which were then compared in order to assess the reliability of these datasets. Our results indicated that standard classifiers were significantly more successful in discriminating the abovementioned emotions and their intensities (reflected by user satisfaction ratings) from annotator data than from user data. These results corroborated that: first, satisfaction data could be used directly as an alternative target variable to model affect, and that they could be predicted exclusively by dialog features. Second, these were only true when trying to predict the abovementioned emotions using annotator?s data, suggesting that user bias does exist in a laboratory-led evaluation.
Resumo:
Choosing an appropriate accounting system for manufacturing has always been a challenge for managers. In this article we try to compare three accounting systems designed since 1980 to address problems of traditional accounting system. In the first place we are going to present a short overview on background and definition of three accounting systems: Activity Based costing, Time-Driven Activity Based Costing and Lean Accounting. Comparisons are made based on the three basic roles of information generated by accounting systems: financial reporting, decision making, and operational control and improvement. The analysis in this paper reveals how decisions are made over the value stream in the companies using Lean Accounting while decisions under the ABC Accounting system are taken at individual product level, and finally we will show how TD-ABC covers both product and process levels for decision making. In addition, this paper shows the importance of nonfinancial measures for operational control and improvement under the Lean Accounting and TD-ABC methods whereas ABC relies mostly on financial measures in this context.
Resumo:
Critical infrastructures support everyday activities in modern societies, facilitating the exchange of services and quantities of various nature. Their functioning is the result of the integration of diverse technologies, systems and organizations into a complex network of interconnections. Benefits from networking are accompanied by new threats and risks. In particular, because of the increased interdependency, disturbances and failures may propagate and render unstable the whole infrastructure network. This paper presents a methodology of resilience analysis of networked systems of systems. Resilience generalizes the concept of stability of a system around a state of equilibrium, with respect to a disturbance and its ability of preventing, resisting and recovery. The methodology provides a tool for the analysis of off-equilibrium conditions that may occur in a single system and propagate through the network of dependencies. The analysis is conducted in two stages. The first stage of the analysis is qualitative. It identifies the resilience scenarios, i.e. the sequence of events, triggered by an initial disturbance, which include failures and the system response. The second stage is quantitative. The most critical scenarios can be simulated, for the desired parameter settings, in order to check if they are successfully handled, i.e recovered to nominal conditions, or they end into the network failure. The proposed methodology aims at providing an effective support to resilience-informed design.
Resumo:
This paper presents an empirical evidence of user bias within a laboratory-oriented evaluation of a Spoken Dialog System. Specifically, we addressed user bias in their satisfaction judgements. We question the reliability of this data for modeling user emotion, focusing on contentment and frustration in a spoken dialog system. This bias is detected through machine learning experiments that were conducted on two datasets, users and annotators, which were then compared in order to assess the reliability of these datasets. The target used was the satisfaction rating and the predictors were conversational/dialog features. Our results indicated that standard classifiers were significantly more successful in discriminating frustration and contentment and the intensities of these emotions (reflected by user satisfaction ratings) from annotator data than from user data. Indirectly, the results showed that conversational features are reliable predictors of the two abovementioned emotions.
Resumo:
INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.
Resumo:
The deployment of nodes in Wireless Sensor Networks (WSNs) arises as one of the biggest challenges of this field, which involves in distributing a large number of embedded systems to fulfill a specific application. The connectivity of WSNs is difficult to estimate due to the irregularity of the physical environment and affects the WSN designers? decision on deploying sensor nodes. Therefore, in this paper, a new method is proposed to enhance the efficiency and accuracy on ZigBee propagation simulation in indoor environments. The method consists of two steps: automatic 3D indoor reconstruction and 3D ray-tracing based radio simulation. The automatic 3D indoor reconstruction employs unattended image classification algorithm and image vectorization algorithm to build the environment database accurately, which also significantly reduces time and efforts spent on non-radio propagation issue. The 3D ray tracing is developed by using kd-tree space division algorithm and a modified polar sweep algorithm, which accelerates the searching of rays over the entire space. Signal propagation model is proposed for the ray tracing engine by considering both the materials of obstacles and the impact of positions along the ray path of radio. Three different WSN deployments are realized in the indoor environment of an office and the results are verified to be accurate. Experimental results also indicate that the proposed method is efficient in pre-simulation strategy and 3D ray searching scheme and is suitable for different indoor environments.
Resumo:
The solar irradiation that a crop receives is directly related to the physical and biological processes that affect the crop. However, the assessment of solar irradiation poses certain problems when it must be measured through fruit inside the canopy of a tree. In such cases, it is necessary to check many test points, which usually requires an expensive data acquisition system. The use of conventional irradiance sensors increases the cost of the experiment, making them unsuitable. Nevertheless, it is still possible to perform a precise irradiance test with a reduced price by using low-cost sensors based on the photovoltaic effect. The aim of this work is to develop a low-cost sensor that permits the measurement of the irradiance inside the tree canopy. Two different technologies of solar cells were analyzed for their use in the measurement of solar irradiation levels inside tree canopies. Two data acquisition system setups were also tested and compared. Experiments were performed in Ademuz (Valencia, Spain) in September 2011 and September 2012 to check the validity of low-cost sensors based on solar cells and their associated data acquisition systems. The observed difference between solar irradiation at high and low positions was of 18.5% ± 2.58% at a 95% confidence interval. Large differences were observed between the operations of the two tested sensors. In the case of a-Si cells based mini-modules, an effect of partial shadowing was detected due to the larger size of the devices, the use of individual c-Si cells is recommended over a-Si cells based mini-modules.
Resumo:
Security intrusions in large systems is a problem due to its lack of scalability with the current IDS-based approaches. This paper describes the RECLAMO project, where an architecture for an Automated Intrusion Response System (AIRS) is being proposed. This system will infer the most appropriate response for a given attack, taking into account the attack type, context information, and the trust and reputation of the reporting IDSs. RECLAMO is proposing a novel approach: diverting the attack to a specific honeynet that has been dynamically built based on the attack information. Among all components forming the RECLAMO's architecture, this paper is mainly focused on defining a trust and reputation management model, essential to recognize if IDSs are exposing an honest behavior in order to accept their alerts as true. Experimental results confirm that our model helps to encourage or discourage the launch of the automatic reaction process.