955 resultados para Transistor circuits.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shanghai as a place where other people's dreams inform the imaginary landscape. How does this relate to the new possibilities available to the current citizens of the city?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean processes are dynamic, complex, and occur on multiple spatial and temporal scales. To obtain a synoptic view of such processes, ocean scientists collect data over long time periods. Historically, measurements were continually provided by fixed sensors, e.g., moorings, or gathered from ships. Recently, an increase in the utilization of autonomous underwater vehicles has enabled a more dynamic data acquisition approach. However, we still do not utilize the full capabilities of these vehicles. Here we present algorithms that produce persistent monitoring missions for underwater vehicles by balancing path following accuracy and sampling resolution for a given region of interest, which addresses a pressing need among ocean scientists to efficiently and effectively collect high-value data. More specifically, this paper proposes a path planning algorithm and a speed control algorithm for underwater gliders, which together give informative trajectories for the glider to persistently monitor a patch of ocean. We optimize a cost function that blends two competing factors: maximize the information value along the path, while minimizing deviation from the planned path due to ocean currents. Speed is controlled along the planned path by adjusting the pitch angle of the underwater glider, so that higher resolution samples are collected in areas of higher information value. The resulting paths are closed circuits that can be repeatedly traversed to collect long-term ocean data in dynamic environments. The algorithms were tested during sea trials on an underwater glider operating off the coast of southern California, as well as in Monterey Bay, California. The experimental results show significant improvements in data resolution and path reliability compared to previously executed sampling paths used in the respective regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of metal stripes for the guiding of plasmons is a well established technique for the infrared regime and has resulted in the development of a myriad of passive optical components and sensing devices. However, the plasmons suffer from large losses around sharp bends, making the compact design of nanoscale sensors and circuits problematic. A compact alternative would be to use evanescent coupling between two sufficiently close stripes, and thus we propose a compact interferometer design using evanescent coupling. The sensitivity of the design is compared with that achieved using a hand-held sensor based on the Kretschmann style surface plasmon resonance technique. Modeling of the new interferometric sensor is performed for various structural parameters using finite-difference time-domain and COMSOL Multiphysics. The physical mechanisms behind the coupling and propagation of plasmons in this structure are explained in terms of the allowed modes in each section of the device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 2000s have been a lively decade for cities. The Worldwatch Institute estimated that 2007 was the first year in human history that more people worldwide lived in cities than the countryside. Globalisation and new digital media technologies have generated the seemingly paradoxical outcome that spatial location came to be more rather than less important, as combinations of firms, industries, cultural activities and creative talents have increasingly clustered around a select node of what have been termed “creative cities,” that are in turn highly networked into global circuits of economic capital, political power and entertainment media. Intellectually, the period has seen what the UCLA geographer Ed Soja refers to as the spatial turn in social theory, where “whatever your interests may be, they can be significantly advanced by adopting a critical spatial perspective”. This is related to the dynamic properties of socially constructed space itself, or what Soja terms “the powerful forces that arise from socially produced spaces such as urban agglomerations and cohesive regional economies,” with the result that “what can be called the stimulus of socio-spatial agglomeration is today being assertively described as the primary cause of economic development, technological innovation, and cultural creativity”

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the fundamental motivations underlying computational cell biology is to gain insight into the complicated dynamical processes taking place, for example, on the plasma membrane or in the cytosol of a cell. These processes are often so complicated that purely temporal mathematical models cannot adequately capture the complex chemical kinetics and transport processes of, for example, proteins or vesicles. On the other hand, spatial models such as Monte Carlo approaches can have very large computational overheads. This chapter gives an overview of the state of the art in the development of stochastic simulation techniques for the spatial modelling of dynamic processes in a living cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Higher order spectral analysis is used to investigate nonlinearities in time series of voltages measured from a realization of Chua's circuit. For period-doubled limit cycles, quadratic and cubic nonlinear interactions result in phase coupling and energy exchange between increasing numbers of triads and quartets of Fourier components as the nonlinearity of the system is increased. For circuit parameters that result in a chaotic Rossler-type attractor, bicoherence and tricoherence spectra indicate that both quadratic and cubic nonlinear interactions are important to the dynamics. When the circuit exhibits a double-scroll chaotic attractor the bispectrum is zero, but the tricoherences are high, consistent with the importance of higher-than-second order nonlinear interactions during chaos associated with the double scroll.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gastric-derived orexigenic peptide ghrelin affects brain circuits involved in energy balance as well as in reward. Indeed, ghrelin activates an important reward circuit involved in natural- as well as drug-induced reward, the cholinergic-dopaminergic reward link. It has been hypothesized that there is a common reward mechanism for alcohol and sweet substances in both animals and humans. Alcohol dependent individuals have higher craving for sweets than do healthy controls and the hedonic response to sweet taste may, at least in part, depend on genetic factors. Rat selectively bred for high sucrose intake have higher alcohol consumption than non-sucrose preferring rats and vice versa. In the present study a group of alcohol-consuming individuals selected from a population cohort was investigated for genetic variants of the ghrelin signalling system in relation to both their alcohol and sucrose consumption. Moreover, the effects of GHS-R1A antagonism on voluntary sucrose- intake and operant self-administration, as well as saccharin intake were investigated in preclinical studies using rodents. The effects of peripheral grelin administration on sucrose intake were also examined. Here we found associations with the ghrelin gene haplotypes and increased sucrose consumption, and a trend for the same association was seen in the high alcohol consumers. The preclinical data show that a GHS-R1A antagonist reduces the intake and self-administration of sucrose in rats as well as saccharin intake in mice. Further, ghrelin increases the intake of sucrose in rats. Collectively, our data provide a clear indication that the GHS-R1A antagonists reduces and ghrelin increases the intake of rewarding substances and hence, the central ghrelin signalling system provides a novel target for the development of drug strategies to treat addictive behaviours. © 2011 Landgren et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the challenge of developing robots that map and navigate autonomously in real world, dynamic environments throughout the robot’s entire lifetime – the problem of lifelong navigation. Static mapping algorithms can produce highly accurate maps, but have found few applications in real environments that are in constant flux. Environments change in many ways: both rapidly and gradually, transiently and permanently, geometrically and in appearance. This paper demonstrates a biologically inspired navigation algorithm, RatSLAM, that uses principles found in rodent neural circuits. The algorithm is demonstrated in an office delivery challenge where the robot was required to perform mock deliveries to goal locations in two different buildings. The robot successfully completed 1177 out of 1178 navigation trials over 37 hours of around the clock operation spread over 11 days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The world of football is a matter of life and death for many of its fans, and has also attracted much sociological attention. Much of this scholarly work focuses on issues such as deviance, identity, globalisation and commodification (Elias and Dunning 1986; Giulianotti and Robertson 2009). More recently, there has been some evidence of a cultural approach to football and to the football shirt (Benzecry 2008). In this paper, we seek to develop this trend by examining the football shirt as a totem, and by understanding it as inserted into circuits of the sacred and the profane, and the authentic and the inauthentic. Through examples such as shirt throwing, badge kissing, shirt swapping and supporters‟ efforts to construct alternative, protest strips, we show that the football shirt is deeply embedded in narratives of authenticity, sacredness and profaneness. In doing so, we aim to represent football as a rich cultural practice, which involves secular rituals and performances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To cover wide range of pulsed power applications, this paper proposes a modularity concept to improve the performance and flexibility of the pulsed power supply. The proposed scheme utilizes the advantage of parallel and series configurations of flyback modules in obtaining high-voltage levels with fast rise time (dv/dt). Prototypes were implemented using 600-V insulated-gate bipolar transistor (IGBT) switches to generate up to 4-kV output pulses with 1-kHz repetition rate for experimentation. To assess the proposed modular approach for higher number of the modules, prototypes were implemented using 1700-V IGBTs switches, based on ten-series modules, and tested up to 20 kV. Conducted experimental results verified the effectiveness of the proposed method

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major challenge in modern photonics and nano-optics is the diffraction limit of light which does not allow field localisation into regions with dimensions smaller than half the wavelength. Localisation of light into nanoscale regions (beyond its diffraction limit) has applications ranging from the design of optical sensors and measurement techniques with resolutions as high as a few nanometres, to the effective delivery of optical energy into targeted nanoscale regions such as quantum dots, nano-electronic and nano-optical devices. This field has become a major research direction over the last decade. The use of strongly localised surface plasmons in metallic nanostructures is one of the most promising approaches to overcome this problem. Therefore, the aim of this thesis is to investigate the linear and non-linear propagation of surface plasmons in metallic nanostructures. This thesis will focus on two main areas of plasmonic research –– plasmon nanofocusing and plasmon nanoguiding. Plasmon nanofocusing – The main aim of plasmon nanofocusing research is to focus plasmon energy into nanoscale regions using metallic nanostructures and at the same time achieve strong local field enhancement. Various structures for nanofocusing purposes have been proposed and analysed such as sharp metal wedges, tapered metal films on dielectric substrates, tapered metal rods, and dielectric V-grooves in metals. However, a number of important practical issues related to nanofocusing in these structures still remain unclear. Therefore, one of the main aims of this thesis is to address two of the most important of issues which are the coupling efficiency and heating effects of surface plasmons in metallic nanostructures. The method of analysis developed throughout this thesis is a general treatment that can be applied to a diversity of nanofocusing structures, with results shown here for the specific case of sharp metal wedges. Based on the geometrical optics approximation, it is demonstrated that the coupling efficiency from plasmons generated with a metal grating into the nanofocused symmetric or quasi-symmetric modes may vary between ~50% to ~100% depending on the structural parameters. Optimal conditions for nanofocusing with the view to minimise coupling and dissipative losses are also determined and discussed. It is shown that the temperature near the tip of a metal wedge heated by nanosecond plasmonic pulses can increase by several hundred degrees Celsius. This temperature increase is expected to lead to nonlinear effects, self-influence of the focused plasmon, and ultimately self-destruction of the metal tip. This thesis also investigates a different type of nanofocusing structure which consists of a tapered high-index dielectric layer resting on a metal surface. It is shown that the nanofocusing mechanism that occurs in this structure is somewhat different from other structures that have been considered thus far. For example, the surface plasmon experiences significant backreflection and mode transformation at a cut-off thickness. In addition, the reflected plasmon shows negative refraction properties that have not been observed in other nanofocusing structures considered to date. Plasmon nanoguiding – Guiding surface plasmons using metallic nanostructures is important for the development of highly integrated optical components and circuits which are expected to have a superior performance compared to their electronicbased counterparts. A number of different plasmonic waveguides have been considered over the last decade including the recently considered gap and trench plasmon waveguides. The gap and trench plasmon waveguides have proven to be difficult to fabricate. Therefore, this thesis will propose and analyse four different modified gap and trench plasmon waveguides that are expected to be easier to fabricate, and at the same time acquire improved propagation characteristics of the guided mode. In particular, it is demonstrated that the guided modes are significantly screened by the extended metal at the bottom of the structure. This is important for the design of highly integrated optics as it provides the opportunity to place two waveguides close together without significant cross-talk. This thesis also investigates the use of plasmonic nanowires to construct a Fabry-Pérot resonator/interferometer. It is shown that the resonance effect can be achieved with the appropriate resonator length and gap width. Typical quality factors of the Fabry- Pérot cavity are determined and explained in terms of radiative and dissipative losses. The possibility of using a nanowire resonator for the design of plasmonic filters with close to ~100% transmission is also demonstrated. It is expected that the results obtained in this thesis will play a vital role in the development of high resolution near field microscopy and spectroscopy, new measurement techniques and devices for single molecule detection, highly integrated optical devices, and nanobiotechnology devices for diagnostics of living cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cooperative Research Centre (CRC) for Rail Innovation is conducting a tranche of industry-led research projects looking into safer rail level crossings. This paper will provide an overview of the Affordable Level Crossings project, a project that is performing research in both engineering and human factors aspects of low-cost level crossing warning devices (LCLCWDs), and is facilitating a comparative trial of these devices over a period of 12 months in several jurisdictions. Low-cost level crossing warning devices (LCLCWDs) are characterised by the use of alternative technologies for high cost components including train detection and connectivity (e.g. radar, acoustic, magnetic induction train detection systems and wireless connectivity replacing traditional track circuits and wiring). These devices often make use of solar power where mains power is not available, and aim to make substantial savings in lifecycle costs. The project involves trialling low-cost level crossing warning devices in shadow-mode, where devices are installed without the road-user interface at a number of existing level crossing sites that are already equipped with conventional active warning systems. It may be possible that the deployment of lower-cost devices can provide a significantly larger safety benefit over the network than a deployment of expensive conventional devices, as the lower cost would allow more passive level crossing sites to be upgraded with the same capital investment. The project will investigate reliability and safety integrity issues of the low-cost devices, as well as evaluate lifecycle costs and investigate human factors issues related to warning reliability. This paper will focus on the requirements and safety issues of LCLCWDs, and will provide an overview of the Rail CRC projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast calculation of quantities such as in-cylinder volume and indicated power is important in internal combustion engine research. Multiple channels of data including crank angle and pressure were collected for this purpose using a fully instrumented diesel engine research facility. Currently, existing methods use software to post-process the data, first calculating volume from crank angle, then calculating the indicated work and indicated power from the area enclosed by the pressure-volume indicator diagram. Instead, this work investigates the feasibility of achieving real-time calculation of volume and power via hardware implementation on Field Programmable Gate Arrays (FPGAs). Alternative hardware implementations were investigated using lookup tables, Taylor series methods or the CORDIC (CoOrdinate Rotation DIgital Computer) algorithm to compute the trigonometric operations in the crank angle to volume calculation, and the CORDIC algorithm was found to use the least amount of resources. Simulation of the hardware based implementation showed that the error in the volume and indicated power is less than 0.1%.