966 resultados para Transient Calibration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The images taken by the Heliospheric Imagers (HIs), part of the SECCHI imaging package onboard the pair of STEREO spacecraft, provide information on the radial and latitudinal evolution of the plasma compressed inside corotating interaction regions (CIRs). A plasma density wave imaged by the HI instrument onboard STEREO-B was found to propagate towards STEREO-A, enabling a comparison between simultaneous remotesensing and in situ observations of its structure to be performed. In situ measurements made by STEREO-A show that the plasma density wave is associated with the passage of a CIR. The magnetic field compressed after the CIR stream interface (SI) is found to have a planar distribution. Minimum variance analysis of the magnetic field vectors shows that the SI is inclined at 54 to the orbital plane of the STEREO-A spacecraft. This inclination of the CIR SI is comparable to the inclination of the associated plasma density wave observed by HI. A small-scale magnetic cloud with a flux rope topology and radial extent of 0.08 AU is also embedded prior to the SI. The pitch-angle distribution of suprathermal electrons measured by the STEREO-A SWEA instrument shows that an open magnetic field topology in the cloud replaced the heliospheric current sheet locally. These observations confirm that HI observes CIRs in difference images when a small-scale transient is caught up in the compression region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use proper orthogonal decomposition (POD) to study a transient teleconnection event at the onset of the 2001 planet-encircling dust storm on Mars, in terms of empirical orthogonal functions (EOFs). There are several differences between this and previous studies of atmospheric events using EOFs. First, instead of using a single variable such as surface pressure or geopotential height on a given pressure surface, we use a dataset describing the evolution in time of global and fully three-dimensional atmospheric fields such as horizontal velocity and temperature. These fields are produced by assimilating Thermal Emission Spectrometer observations from NASA's Mars Global Surveyor spacecraft into a Mars general circulation model. We use total atmospheric energy (TE) as a physically meaningful quantity which weights the state variables. Second, instead of adopting the EOFs to define teleconnection patterns as planetary-scale correlations that explain a large portion of long time-scale variability, we use EOFs to understand transient processes due to localised heating perturbations that have implications for the atmospheric circulation over distant regions. The localised perturbation is given by anomalous heating due to the enhanced presence of dust around the northern edge of the Hellas Planitia basin on Mars. We show that the localised disturbance is seemingly restricted to a small number (a few tens) of EOFs. These can be classified as low-order, transitional, or high-order EOFs according to the TE amount they explain throughout the event. Despite the global character of the EOFs, they show the capability of accounting for the localised effects of the perturbation via the presence of specific centres of action. We finally discuss possible applications for the study of terrestrial phenomena with similar characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a cesium-iodide prism the long wavelength range of an infrared spectrometer may be extended to 55 The use of such a prism, the choice of optical system, and the problems of stray radiation are all discussed. Accurate data are assembled for calibration in this region, and sample calibration traces are shown. A simple gas absorption cell is described for use at long wavelengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A powerful way to test the realism of ocean general circulation models is to systematically compare observations of passive tracer concentration with model predictions. The general circulation models used in this way cannot resolve a full range of vigorous mesoscale activity (on length scales between 10100 km). In the real ocean, however, this activity causes important variability in tracer fields. Thus, in order to rationally compare tracer observations with model predictions these unresolved fluctuations (the model variability error) must be estimated. We have analyzed this variability using an eddyresolving reducedgravity model in a simple midlatitude doublegyre configuration. We find that the wave number spectrum of tracer variance is only weakly sensitive to the distribution of (large scale slowly varying) tracer sources and sinks. This suggests that a universal passive tracer spectrum may exist in the ocean. We estimate the spectral shape using highresolution measurements of potential temperature on an isopycnal in the upper northeast Atlantic Ocean, finding a slope near k 1.7 between 10 and 500 km. The typical magnitude of the variance is estimated by comparing tracer simulations using different resolutions. For CFC and tritiumtype transient tracers the peak magnitude of the model variability saturation error may reach 0.20 for scales shorter than 100 km. This is of the same order as the time mean saturation itself and well over an order of magnitude greater than the instrumental uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient and continuous recombinant protein expression by HEK cells was evaluated in a perfused monolithic bioreactor. Highly porous synthetic cryogel scaffolds (10ml bed volume) were characterised by scanning electron microscopy and tested as cell substrates. Efficient seeding was achieved (94% inoculum retained, with 91-95% viability). Metabolite monitoring indicated continuous cell growth, and endpoint cell density was estimated by genomic DNA quantification to be 5.2x108, 1.1x109 and 3.5x1010 at day 10, 14 and 18. Culture of stably transfected cells allowed continuous production of the Drosophila cytokine Sptzle by the bioreactor at the same rate as in monolayer culture (total 1.2 mg at d18) and this protein was active. In transient transfection experiments more protein was produced per cell compared with monolayer culture. Confocal microscopy confirmed homogenous GFP expression after transient transfection within the bioreactor. Monolithic bioreactors are thus shown to be a flexible and powerful tool for manufacturing recombinant proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a new simple approach for combining empirical with raw (i.e., not bias corrected) coupled model ensemble forecasts in order to make more skillful interval forecasts of ENSO. A Bayesian normal model has been used to combine empirical and raw coupled model December SST Nio-3.4 index forecasts started at the end of the preceding July (5-month lead time). The empirical forecasts were obtained by linear regression between December and the preceding July Nio-3.4 index values over the period 19502001. Coupled model ensemble forecasts for the period 198799 were provided by ECMWF, as part of the Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction (DEMETER) project. Empirical and raw coupled model ensemble forecasts alone have similar mean absolute error forecast skill score, compared to climatological forecasts, of around 50% over the period 198799. The combined forecast gives an increased skill score of 74% and provides a well-calibrated and reliable estimate of forecast uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous ring-opening polymerization of macrocyclic aromatic thioether ketones [-1,4-SC6H4CO-C6H4-](n) (n = 3 and 4), in which the thioether linkages are para to the ketone, occurs during rapid, transient heating to 480degreesC, to afford a soluble, semi-crystalline poly(thioether ketone) of high molar mass (eta(inh) > 1.0 dL . g(-1)). Corresponding macrocyclic ether ketone, and a macrocyclic thioether ether ketone in which the thioether linkage is para to the ether rather than to the ketone, show no evidence of polymerization under analogous conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurately measured peptide masses can be used for large-scale protein identification from bacterial whole-cell digests as an alternative to tandem mass spectrometry (MS/MS) provided mass measurement errors of a few parts-per-million (ppm) are obtained. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) routinely achieves such mass accuracy either with internal calibration or by regulating the charge in the analyzer cell. We have developed a novel and automated method for internal calibration of liquid chromatography (LC)/FTICR data from whole-cell digests using peptides in the sample identified by concurrent MS/MS together with ambient polydimethyl-cyclosiloxanes as internal calibrants in the mass spectra. The method reduced mass measurement error from 4.3 +/- 3.7 ppm to 0.3 +/- 2.3 ppm in an E. coli LC/FTICR dataset of 1000 MS and MS/MS spectra and is applicable to all analyses of complex protein digests by FTICRMS. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, IR thermography is used as a non-destructive tool for impact damage characterisation on thermoplastic E-glass/polypropylene composites for automotive applications. The aim of this experimentation was to compare impact resistance and to characterise damage patterns of different laminates, in order to provide indications for their use in components. Two E-glass/polypropylene composites, commingled Twintex (with three different weave structures: directional, balanced and 3-D) and random reinforced GMT, were in particular characterised. Directional and balanced Twintex were also coupled in a number of hybrid configurations with GMT to evaluate the possible use of GMT/Twintex hybrids in high-energy absorption components. The laminates were impacted using a falling weight tower, with impact energies ranging from 15 J to penetration. Using IR thermography during cooling down following a long pulse (3 s), impact damaged areas were characterised and the influence of weave structure on damage patterns was studied. IR thermography offered good accuracy for laminates with thickness not exceeding 3.5 mm: this appears to be a limit for the direct use of this method on components, where more refined signal treatment would probably be needed for impact damage characterisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercially available UHT cream was tempered at 4 degrees C for 24 h and whipped for different times: 3. 6. 9 and 12 nun. The following properties of cream were measured: rheological and interfacial properties. overrun and size distribution of air bubbles. The whipping process changes the properties of cream, which exhibits viscoelastic behaviour with a high influence of elastic component. The air bubbles incorporated during the process result in forming stronger foam containing smaller bubbles. and also give a higher overrun. These changes are observed around 9 min of whipping. when the amount of air is sufficient to create a stable structure. Further whipping reduces the overrun and the foam partly collapses: this may be caused by aggregation of fat droplets. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate calibration of a head mounted display (HMD) is essential both for research on the visual system and for realistic interaction with virtual objects. Yet, existing calibration methods are time consuming and depend on human judgements, making them error prone. The methods are also limited to optical see-through HMDs. Building on our existing HMD calibration method [1], we show here how it is possible to calibrate a non-see-through HMD. A camera is placed inside an HMD displaying an image of a regular grid, which is captured by the camera. The HMD is then removed and the camera, which remains fixed in position, is used to capture images of a tracked calibration object in various positions. The locations of image features on the calibration object are then re-expressed in relation to the HMD grid. This allows established camera calibration techniques to be used to recover estimates of the displays intrinsic parameters (width, height, focal length) and extrinsic parameters (optic centre and orientation of the principal ray). We calibrated a HMD in this manner in both see-through and in non-see-through modes and report the magnitude of the errors between real image features and reprojected features. Our calibration method produces low reprojection errors and involves no error-prone human measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide a system identification framework for the analysis of THz-transient data. The subspace identification algorithm for both deterministic and stochastic systems is used to model the time-domain responses of structures under broadband excitation. Structures with additional time delays can be modelled within the state-space framework using additional state variables. We compare the numerical stability of the commonly used least-squares ARX models to that of the subspace N4SID algorithm by using examples of fourth-order and eighth-order systems under pulse and chirp excitation conditions. These models correspond to structures having two and four modes simultaneously propagating respectively. We show that chirp excitation combined with the subspace identification algorithm can provide a better identification of the underlying mode dynamics than the ARX model does as the complexity of the system increases. The use of an identified state-space model for mode demixing, upon transformation to a decoupled realization form is illustrated. Applications of state-space models and the N4SID algorithm to THz transient spectroscopy as well as to optical systems are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quadratic programming optimization procedure for designing asymmetric apodization windows tailored to the shape of time-domain sample waveforms recorded using a terahertz transient spectrometer is proposed. By artificially degrading the waveforms, the performance of the designed window in both the time and the frequency domains is compared with that of conventional rectangular, triangular (Mertz), and Hamming windows. Examples of window optimization assuming Gaussian functions as the building elements of the apodization window are provided. The formulation is sufficiently general to accommodate other basis functions. (C) 2007 Optical Society of America