906 resultados para Toxicity of Copper
Resumo:
The molluscicidal effect of nicotinanilide was evaluated and compared with niclosamide (2',5-dichloro-4'-nitrosalicylanilide, ethanolamide salt) against different stages of the freshwater snail Lymnaea luteola i.e., eggs, immature, young mature, and adults. Calculated values of lethal concentrations (LC50 and LC90 ) showed that both nicotinanilide and niclosamide as toxic against eggs, immature, and adults. The young mature stage of the snails was comparatively more tolerant to both molluscicides than the other stages. The toxicity of the intermediate compounds of nicotinanilide against the young mature stage of the snails showed them as ineffective. The mortality pattern of the snails exposed to LC90 concentration of these molluscicides showed niclosamide to kill faster (within 8 to 9 h) than nicotinanilide (26 to 28 h). In view of the above studies it may be concluded that both molluscicides are toxic against all the stages of the L. luteola snails.
Resumo:
The manuscript describes a study on the blood cholinesterase (ChE) level in an exposed population at different interval of time after spraying with malathion suspension (SRES) use for kala-azar vector control in an endemic area of Bihar, India. The toxicity of a 5% malathion formulation in the form of a slow release emulsified suspension (SRES) was assessed by measuring serum ChE levels in spraymen and in the exposed population.The study showed a significant decrease in ChE levels in the spraymen (p < 0.01) after one week of spraying and in exposed population one week and one month after of spraying (p < 0.01), but was still within the normal range of ChE concentration, one year after spraying, the ChE concentration in the exposed population was the same as prior to spraying (p > 0.01). On no occasion was the decrease in ChE level alarming. A parallel examination of the clinical status also showed the absence of any over toxicity or any behavioural changes in the exposed population. Hence, it may be concluded that 5% malathion slow release formulation, SRES, is a safe insecticide for use as a vector control measure in endemic areas of kala-azar in Bihar, India so long as good personal protection for spraymen is provided to minimize absorption and it can substitute the presently used traditional DDT spray.
Resumo:
Background and aim: Wilson disease (WD) is an inherited disorder ofhepatic copper excretion leading to toxic accumulation of copper in theliver as well as the brain, cornea, and other organs. The defect is due tomutations of the copper-transporting ATPase ATP7B. Here, we describethe adult cases of hepatic WD diagnosed at the CHUV between 2005and 2010.Methods: Clinical manifestions, results of diagnostic tests, and follow-upof adult patients with hepatic WD were recorded systematically.Results: Seven new adult cases of hepatic WD were diagnosed in ourcenter between 2005 and 2010. Three were women and 4 men, with amedian a ge at d iagnosis o f 24 (range, 1 8-56) years. Three patientspresented with acute liver failure (ALF), three with persistently elevatedliver function tests, and one with a dvanced cirrhosis. None hadneurological manifestations. Only one patient, presenting with ALF, had aKayser-Fleischer corneal ring. Median ceruloplasmin levels at diagnosiswere 0.13 (range, <0.03-0.30) g/l, median 24 h urinary copper excretion6.3 (range, 0.4-62.0) μmol/24 h, and median hepatic copperconcentration 591 (range, 284-1049) μg/g. At least one mutation in theATP7B g ene was i dentified in a ll patients. Allelic frequency of t hecommon H1069Q mutation was 14%. Two patients presenting with ALFand the one with advanced cirrhosis underwent successful l ivertransplantation. One patient with ALF recovered under chelator therapy.D-penicillamine was used as first-line chelator treatment, with a switch totrientine due to adverse effects in 2 out of 4 patients u nder l ong-termtreatment.Conclusions: The clinical presentation of WD and the performance ofdiagnostic tests are variable. A high index of suspicion i n clinicallycompatible situations i s key, with a combination of tests allowing thediagnosis of WD.
Resumo:
Abstract: Traditionally, pollution risk assessment is based on the measurement of a pollutant's total concentration in a sample. The toxicity of a given pollutant in the environment, however, is tightly linked to its bioavailability, which may differ significantly from the total amount. Physico-chemical and biological parameters strongly influence pollutant fate in terms of leaching, sequestration and biodegradation. Bacterial sensorreporters, which consist of living micro-organisms genetically engineered to produce specific output in response to target chemicals, offer an interesting alternative to monitoring approaches. Bacterial sensor-reporters detect bioavailable and/or bioaccessible compound fractions in samples. Currently, a variety of environmental pollutants can be targeted by specific biosensor-reporters. Although most of such strains are still confined to the lab, several recent reports have demonstrated utility of bacterial sensing-reporting in the field, with method detection limits in the nanomolar range. This review illustrates the general design principles for bacterial sensor-reporters, presents an overview of the existing biosensor-reporter strains with emphasis on organic compound detection. A specific focus throughout is on the concepts of bioavailability and bioaccessibility, and how bacteria-based sensing-reporting systems can help to improve our basic understanding of the different processes at work.
Resumo:
CONTENTS: Summary 28 I. Historic background and introduction 29 II. Diversity of cardenolide forms 29 III. Biosynthesis 30 IV. Cardenolide variation among plant parts 31 V. Phylogenetic distribution of cardenolides 32 VI. Geographic distribution of cardenolides 34 VII. Ecological genetics of cardenolide production 34 VIII. Environmental regulation of cardenolide production 34 IX. Biotic induction of cardenolides 36 X. Mode of action and toxicity of cardenolides 38 XI. Direct and indirect effects of cardenolides on specialist and generalist insect herbivores 39 XII. Cardenolides and insect oviposition 39 XIII. Target site insensitivity 40 XIV. Alternative mechanisms of cardenolide resistance 40 XV. Cardenolide sequestration 41 Acknowledgements 42 References 42 SUMMARY: Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na(+) /K(+) -ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.
Resumo:
INTRODUCTION: It has been known for a long time that the efficiency and toxicity of drugs change during a 24-h period. However, the molecular mechanisms involved in these processes have started to emerge only recently. AREAS COVERED: This review aims to highlight recent discoveries showing the direct role of the molecular circadian clock in xenobiotic metabolism at the transcriptional and post-transcriptional levels in the liver and intestine, and the different ways of elimination of these metabolized drugs via biliary and urine excretions. Most of the related literature focuses on transcriptional regulation by the circadian clock of xenobiotic metabolism in the liver; however, the role of this timing system in the excretion of metabolized drugs and the importance of the kidney in this phenomenon are generally neglected. The goal of this review is to describe the molecular mechanisms involved in rhythmic drug metabolism and excretion. EXPERT OPINION: Chronopharmacology is used to analyze the metabolism of drugs in mammals according to the time of day. The circadian timing system plays a key role in the changes of toxicity of drugs by influencing their metabolisms in the liver and intestine in addition to their excretion via bile flow and urine.
Resumo:
The need for drug combinations to treat visceral leishmaniasis (VL) arose because of resistance to antimonials, the toxicity of current treatments and the length of the course of therapy. Calcium channel blockers (CCBs) have shown anti-leishmanial activity; therefore their use in combination with standard drugs could provide new alternatives for the treatment of VL. In this work, in vitro isobolograms of Leishmania (Leishmania) chagasi using promastigotes or intracellular amastigotes were utilised to identify the interactions between five CCBs and the standard drugs pentamidine, amphotericin B and glucantime. The drug interactions were assessed with a fixed ratio isobologram method and the fractional inhibitory concentrations (FICs), sum of FICs (ΣFICs) and the overall mean ΣFIC were calculated for each combination. Graphical isobologram analysis showed that the combination of nimodipine and glucantime was the most promising in amastigotes with an overall mean ΣFIC value of 0.79. Interactions between CCBs and the anti-leishmanial drugs were classified as indifferent according to the overall mean ΣFIC and the isobologram graphic analysis.
Resumo:
The primary function of secondary plant metabolites is thought to be defence against herbivores. The frequent occurrence of these same noxious compounds in floral nectar, which functions primarily to attract pollinators, has been seen as paradoxical. Although these compounds may have an adaptive purpose in nectar, they may also occur as a nonadaptive consequence of chemical defence in other plant parts. If nectar chemistry reflects physiological constraints or passive leakage from other tissues, we expect that the identity and relative concentration of nectar cardenolides to be correlated with those of other plant parts; in contrast, discordant distributions of compounds in nectar and other tissues may suggest adaptive roles in nectar. We compared the concentrations and identities of cardenolides in the nectar, leaves and flowers of 12 species from a monophyletic clade of Asclepias. To measure putative toxicity of nectar cardenolides, we then examined the effects of a standard cardenolide (digoxin) on the behaviour of bumblebees, a common generalist pollinator of Asclepias. We found that the average cardenolide concentrations in nectar, leaves and flowers of the 12 Asclepias species were positively correlated as predicted by nonadaptive hypotheses. However, significant differences in the identities and concentrations of individual cardenolides between nectar and leaves suggest that the production or allocation of cardenolides may be independently regulated at each plant part. In addition, cardenolide concentrations in leaves and nectar exhibited no phylogenetic signal. Surprisingly, bumblebees did not demonstrate an aversion to digoxin-rich nectar, which may indicate that nectar cardenolides have little effect on pollination. Although the idea that discordant patterns of secondary metabolites across tissue types may signal adaptive functions is attractive, there is evidence to suggest constraint contributes to nectar secondary chemistry. Further work testing the ecological impacts of such patterns will be critical in determining the functional significance of nectar cardenolides
Resumo:
The prevention of Chagas disease is based primarily on the chemical control of Triatoma infestans (Klug) using pyrethroid insecticides. However, high resistance levels, correlated with control failures, have been detected in Argentina and Bolivia. A previous study at our laboratory found that imidacloprid could serve as an alternative to pyrethroid insecticides. We studied the delayed toxicity of imidacloprid and the influence of the blood feeding condition of the insect on the toxicity of this insecticide; we also studied the effectiveness of various commercial imidacloprid formulations against a pyrethroid-resistant T. infestans population from the Gran Chaco ecoregion. Variations in the toxic effects of imidacloprid were not observed up to 72 h after exposure and were not found to depend on the blood feeding condition of susceptible and resistant individuals. Of the three different studied formulations of imidacloprid on glass and filter paper, only the spot-on formulation was effective. This formulation was applied to pigeons at doses of 1, 5, 20 and 40 mg/bird. The nymphs that fed on pigeons treated with 20 mg or 40 mg of the formulation showed a higher mortality rate than the control group one day and seven days post-treatment (p < 0.01). A spot-on formulation of imidacloprid was effective against pyrethroid-resistant T. infestans populations at the laboratory level.
Resumo:
The role of ATP-binding cassette (ABC) transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 μM). The best result in the series was obtained with the addition of verapamil (40 μM), which led to a 2x increase in the toxicity of temephos, suggesting that ABC transporters may be partially involved in conferring resistance to the populations evaluated.
Resumo:
Aiming to identify new sources of bioactive secondary metabolites, we isolated 82 endophytic fungi from stems and barks of the native Brazilian tree Caesalpinia echinata Lam. (Fabaceae). We tested their ethyl acetate extracts in several in vitro assays. The organic extracts from three isolates showed antibacterial activity against Staphylococcus aureus and Escherichia coli [minimal inhibitory concentration (MIC) 32-64 μg/mL]. One isolate inhibited the growth of Salmonella typhimurium (MIC 64 μg/mL) and two isolates inhibited the growth of Klebsiella oxytoca (MIC 64 μg/mL), Candida albicans and Candida tropicalis (MIC 64-128 μg/mL). Fourteen extracts at a concentration of 20 μg/mL showed antitumour activities against human breast cancer and human renal cancer cells, while two isolates showed anti-tumour activities against human melanoma cancer cells. Six extracts were able to reduce the proliferation of human peripheral blood mononuclear cells, indicating some degree of selective toxicity. Four isolates were able to inhibit Leishmania (Leishmania) amazonensis and one isolate inhibited Trypanosoma cruzi by at least 40% at 20 μg/mL. The trypanocidal extract obtained from Fusarium sp. [KF611679] culture was subjected to bioguided fractionation, which revealed beauvericin as the compound responsible for the observed toxicity of Fusarium sp. to T. cruzi. This depsipeptide showed a half maximal inhibitory concentration of 1.9 μg/mL (2.43 μM) in a T. cruzi cellular culture assay.
Resumo:
The diagnosis of mucocutaneous leishmaniasis (MCL) is hampered by the absence of a gold standard. An accurate diagnosis is essential because of the high toxicity of the medications for the disease. This study aimed to assess the ability of polymerase chain reaction (PCR) to identify MCL and to compare these results with clinical research recently published by the authors. A systematic literature review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA Statement was performed using comprehensive search criteria and communication with the authors. A meta-analysis considering the estimates of the univariate and bivariate models was performed. Specificity near 100% was common among the papers. The primary reason for accuracy differences was sensitivity. The meta-analysis, which was only possible for PCR samples of lesion fragments, revealed a sensitivity of 71% [95% confidence interval (CI) = 0.59; 0.81] and a specificity of 93% (95% CI = 0.83; 0.98) in the bivariate model. The search for measures that could increase the sensitivity of PCR should be encouraged. The quality of the collected material and the optimisation of the amplification of genetic material should be prioritised.
Resumo:
Median age at diagnosis in patients with glioblastoma (GB) is slowly increasing with an aging population in Western countries, and was 64years in 2006. The number of patients age 65 and older with GB will double in 2030 compared with 2000. Survival in this older cohort of patients is significantly less than seen in younger patients. This may in part be related to more aggressive biology of tumor, reduced use of standard management approaches, increased toxicity of available therapies, and increased presence of comorbidities in this older patient population. Limited data do support the use of more extensive resection in these patients. Randomized data support the use of post-operative radiotherapy (RT) versus supportive care, but do not demonstrate a benefit for the use of the standard 6weeks course of RT over hypofractionated RT given over 3weeks. Preliminary data of randomized studies raise the possibility of temozolomide alone as an option for these patients. The use of 6weeks of RT with concurrent and adjuvant temozolomide has been associated with reasonably good survival in several uncontrolled small series of selected older patients; however, this better outcome may be related to the selection of better prognosis patients rather than the specific therapy utilized. The current National Cancer Institute of Canada (NCIC) and European Organization for Research and Treatment of Cancer (EORTC) CE.6/26062/22061 randomized study of short course RT with or without concurrent and adjuvant temozolomide will help determine the optimal therapy for this older cohort with currently available therapies.
Resumo:
Wilson's disease (WD), an autosomal recessive disorder of copper transport with a broad range of genotypic and phenotypic characteristics, results from mutations in the ATP7B gene. Herein we report the results of mutation analysis of the ATP7B gene in a group of 118 Wilson disease families (236 chromosomes) prevalently of Italian origin. Using DNA sequencing we identified 83 disease-causing mutations. Eleven were novel, while twenty one already described mutations were identified in new populations in this study. In particular, mutation analysis of 13 families of Romanian origin showed a high prevalence of the p.H1069Q mutation (50%). Detection of new mutations in the ATP7B gene in new populations increases our capability of molecular analysis that is essential for early diagnosis and treatment of WD.
Resumo:
OBJECTIVE Streptozotocin (STZ) is the most widely used diabetogenic agent in animal models of islet transplantation. However, the immunomodifying effects of STZ and the ensuing hyperglycemia on lymphocyte subsets, particularly on T regulatory cells (Tregs), remain poorly understood. RESEARCH DESIGN AND METHODS This study evaluated how STZ-induced diabetes affects adaptive immunity and the consequences thereof on allograft rejection in murine models of islet and skin transplantation. The respective toxicity of STZ and hyperglycemia on lymphocyte subsets was tested in vitro. The effect of hyperglycemia was assessed independently of STZ in vivo by the removal of transplanted syngeneic islets, using an insulin pump, and with rat insulin promoter diphtheria toxin receptor transgenic mice. RESULTS Early lymphopenia in both blood and spleen was demonstrated after STZ administration. Direct toxicity of STZ on lymphocytes, particularly on CD8(+) cells and B cells, was shown in vitro. Hyperglycemia also correlated with blood and spleen lymphopenia in vivo but was not lymphotoxic in vitro. Independently of hyperglycemia, STZ led to a relative increase of Tregs in vivo, with the latter retaining their suppressive capacity in vitro. The higher frequency of Tregs was associated with Treg proliferation in the blood, but not in the spleen, and higher blood levels of transforming growth factor-β. Finally, STZ administration delayed islet and skin allograft rejection compared with naive mice. CONCLUSIONS These data highlight the direct and indirect immunosuppressive effects of STZ and acute hyperglycemia, respectively. Thus, these results have important implications for the future development of tolerance-based protocols and their translation from the laboratory to the clinic.