906 resultados para Thermoelectric power plants
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This article presents a thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum Exergetic Production Cost (EPC), based on the Second Law of Thermodynamics. The variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as final output. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a heuristic model for integrated planning of primary distribution network and secondary distribution circuits is proposed. A Tabu Search (TS) algorithm is employed to solve the planning of primary distribution networks. Evolutionary Algorithms (EA) are used to solve the planning model of secondary networks. The planning integration of both networks is carried out by means a constructive heuristic taking into account a set of integration alternatives between these networks. These integration alternatives are treated in a hierarchical way. The planning of primary networks and secondary distribution circuits is carried out based on assessment of the effects of the alternative solutions in the expansion costs of both networks simultaneously. In order to evaluate this methodology, tests were performed for a real-life distribution system taking into account the primary and secondary networks.
Resumo:
This paper proposes a new approach for optimal phasor measurement units placement for fault location on electric power distribution systems using Greedy Randomized Adaptive Search Procedure metaheuristic and Monte Carlo simulation. The optimized placement model herein proposed is a general methodology that can be used to place devices aiming to record the voltage sag magnitudes for any fault location algorithm that uses voltage information measured at a limited set of nodes along the feeder. An overhead, three-phase, three-wire, 13.8 kV, 134-node, real-life feeder model is used to evaluate the algorithm. Tests show that the results of the fault location methodology were improved thanks to the new optimized allocation of the meters pinpointed using this methodology. © 2011 IEEE.
Resumo:
In this work it is proposed to validate an evolutionary tuning algorithm in plants composed by a grid connected inverter. The optimization aims the tuning of the slopes of P-Ω and Q-V curves so that the system is stable, damped and minimum settling time. Simulation and experimental results are presented to prove the feasibility of the proposed approach. However, experimental results demonstrate a compromising effect of grid frequency oscillations in the active power transferring. In addition, it was proposed an additional loop to compensate this effect ensuring a constant active power flow. © 2011 IEEE.
Resumo:
This paper presents a power system capacity expansion planning modelconsidering carbon emissions constraints. In addition to the traditionaltechnical and economical issues usually considered in the planning process, two environmental policies that consist on the taxation and the annual limitsof carbon dioxide (CO 2) emissions are considered. Furthermore, the gradualretirement of old inefficient generation plants has been included. The approachguarantees a cleaner electricity production in the expanded power system ata relatively low cost. The proposed model considers the transmission systemand is applied to a 4-region and 11-region power systems over a 20-yearplanning horizon. Results show practical investment decisions in terms of sustainability and costs.
Resumo:
The system reliability depends on the reliability of its components itself. Therefore, it is necessary a methodology capable of inferring the state of functionality of these components to establish reliable indices of quality. Allocation models for maintenance and protective devices, among others, have been used in order to improve the quality and availability of services on electric power distribution systems. This paper proposes a methodology for assessing the reliability of distribution system components in an integrated way, using probabilistic models and fuzzy inference systems to infer about the operation probability of each component. © 2012 IEEE.
Resumo:
In this work, experimental results are reported for a small scale cogeneration plant for power and refrigeration purposes. The plant includes a natural gas microturbine and an ammonia/water absorption chiller fired by steam. The system was tested under different turbine loads, steam pressures and chiller outlet temperatures. An evaluation based on the 1st and 2nd Laws of Thermodynamics was also performed. For the ambient temperature around 24°C and microturbine at full load, the plant is able to provide 19 kW of saturated steam at 5.3 bar (161 °C), corresponding to 9.2 kW of refrigeration at -5 °C (COP = 0.44). From a 2nd law point-of-view, it was found that there is an optimal chiller outlet temperature that maximizes the chiller exergetic efficiency. As expected, the microturbine presented the highest irreversibilities, followed by the absorption chiller and the HRSG. In order to reduce the plant exergy destruction, it is recommended a new design for the HRSG and a new insulation for the exhaust pipe. © 2013 Elsevier Ltd. All rights reserved.
Análise de dificuldades técnicas e econômicas na inserção da cogeração pelas usinas sucroalcooleiras
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A universalização do fornecimento de energia elétrica é uma meta ainda distante de ser alcançada na Amazônia brasileira, em face dos obstáculos geográficos, da dispersão de seus habitantes, da indefinição de tecnologias adequadas, além dos aspectos econômicos, em que pese ações governamentais, traduzidas no Programa Luz para Todos - PLpT, criado em 2003, cuja meta é atender a totalidade dos consumidores rurais até 2010, e a determinação da Agência Nacional de Energia Elétrica –ANEEL, responsável no Brasil pela regulação do setor elétrico, da obrigatoriedade da universalização até 2015. Este trabalho descreve pesquisa realizada no rio Madeira, na Amazônia brasileira, em que a geração de energia elétrica para atendimento de comunidades e pequenas cidades ao longo do rio, contribuindo para a universalização, pode ser viabilizada usando como fonte renovável inédita a biomassa lenhosa depositada no fundo do rio, decorrente de processos naturais, cuja retirada faz parte da rotina do Ministério dos Transportes, por obrigação legal, para viabilizar segurança na navegação. Como etapa inicial foram realizadas revisões bibliográficas para dar suporte à fundamentação teórica acerca de sistema elétrico brasileiro, universalização de acesso à energia elétrica, fontes renováveis na Amazônia, tecnologias para geração de eletricidade usando biomassa como fonte, subsídios no setor elétrico do Brasil, o rio Madeira, suas características e importância, além de ferramentas de análise de investimento. Em seguida, foram coletadas informações junto à AHIMOC, órgão responsável pela hidrovia do Madeira, quanto aos dados quantitativos e qualitativos da retirada de biomassa lenhosa do leito desse rio, bem como trabalhos de coleta in locu de amostras dessa biomassa para posterior análise de suas características físico-químicas em laboratório da UFAM. De posse dessas informações procedeu-se a avaliação de potencial de geração de energia elétrica da biomassa, assim como de rotas tecnológicas para tal. Os resultados obtidos das biomassas coletadas serviram como balizadores para confirmação de valores constantes na literatura e foram usados posteriormente na avaliação de potencial de geração de energia elétrica com identificação de rotas tecnológicas para tal. Etapa posterior contemplou a obtenção junto à concessionária de identificação e caracterização de potenciais mercados consumidores localizados na calha do Rio Madeira. Uma vez caracterizada a biomassa disponível, as possíveis rotas tecnológicas e os potenciais mercados consumidores, foram avaliados os aspectos tecnológicos, econômicos, ambientais, sociais e legais envolvidos. O estudo conclui pela competitividade do sistema de gaseificação, podendo contribuir para a universalização do acesso a eletricidade, cuja viabilização depende de adoção de política pública neste sentido, a partir de ações entre os Ministérios dos Transportes, de Minas e Energia e do Meio Ambiente. Conclui, também, pelo potencial de atração de capital privado, o que contribuiria para a redução de gastos públicos. Trabalhos futuros quanto à replicabilidade do estudo em áreas com fenômeno semelhante, bem como de oportunidades de uso de outras biomassas apresentam-se viáveis.
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Trigeneration systems have been used with advantage in the last years in distributed electricity generation systems as a function of a growth of natural gas pipeline network distribution system, tax incentives, and energy regulation policies. Typically, a trigeneration system is used to produce electrical power simultaneously with supplying heating and cooling load by recovering the combustion products thermal power content that otherwise would be driven to atmosphere. Concerning that, two small scale trigeneration plants have been tested for overall efficiency evaluation and operational comparison. The first system is based on a 30 kW (ISO) natural gas powered microturbine, and the second one uses a 26 kW natural gas powered internal combustion engine coupled to an electrical generator as a prime mover. The stack gases from both machines were directed to a 17.6 kW ammonia-water absorption refrigeration chiller for producing chilled water first and next to a water heat recovery boiler in order to produce hot water. Experimental results are presented along with relevant system operational parameters for appropriate operation including natural gas consumption, net electrical and thermal power production, i.e., hot and cold water production rates, primary energy saving index, and the energy utilization factor over total and partial electrical load operational conditions. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A new conversion structure for three-phase grid-connected photovoltaic (PV) generation plants is presented and discussed in this Thesis. The conversion scheme is based on two insulated PV arrays, each one feeding the dc bus of a standard 2-level three-phase voltage source inverter (VSI). Inverters are connected to the grid by a traditional three-phase transformer having open-end windings at inverters side and either star or delta connection at the grid side. The resulting conversion structure is able to perform as a multilevel VSI, equivalent to a 3-level inverter, doubling the power capability of a single VSI with given voltage and current ratings. Different modulation schemes able to generate proper multilevel voltage waveforms have been discussed and compared. They include known algorithms, some their developments, and new original approaches. The goal was to share the grid power with a given ratio between the two VSI within each cycle period of the PWM, being the PWM pattern suitable for the implementation in industrial DSPs. It has been shown that an extension of the modulation methods for standard two-level inverter can provide a elegant solution for dual two-level inverter. An original control method has been introduced to regulate the dc-link voltages of each VSI, according to the voltage reference given by a single MPPT controller. A particular MPPT algorithm has been successfully tested, based on the comparison of the operating points of the two PV arrays. The small deliberately introduced difference between two operating dc voltages leads towards the MPP in a fast and accurate manner. Either simulation or experimental tests, or even both, always accompanied theoretical developments. For the simulation, the Simulink tool of Matlab has been adopted, whereas the experiments have been carried out by a full-scale low-voltage prototype of the whole PV generation system. All the research work was done at the Lab of the Department of Electrical Engineering, University of Bologna.
Resumo:
Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems.
Resumo:
Durch steigende Energiekosten und erhöhte CO2 Emission ist die Forschung an thermoelektrischen (TE) Materialien in den Fokus gerückt. Die Eignung eines Materials für die Verwendung in einem TE Modul ist verknüpft mit der Gütezahl ZT und entspricht α2σTκ-1 (Seebeck Koeffizient α, Leitfähigkeit σ, Temperatur T und thermische Leitfähigkeit κ). Ohne den Leistungsfaktor α2σ zu verändern, soll ZT durch Senkung der thermischen Leitfähigkeit mittels Nanostrukturierung angehoben werden.rnBis heute sind die TE Eigenschaften von den makroskopischen halb-Heusler Materialen TiNiSn und Zr0.5Hf0.5NiSn ausgiebig erforscht worden. Mit Hilfe von dc Magnetron-Sputterdeposition wurden nun erstmals halbleitende TiNiSn und Zr0.5Hf0.5NiSn Schichten hergestellt. Auf MgO (100) Substraten sind stark texturierte polykristalline Schichten bei Substrattemperaturen von 450°C abgeschieden worden. Senkrecht zur Oberfläche haben sich Korngrößen von 55 nm feststellen lassen. Diese haben Halbwertsbreiten bei Rockingkurven von unter 1° aufgewiesen. Strukturanalysen sind mit Hilfe von Röntgenbeugungsexperimenten (XRD) durchgeführt worden. Durch Wachstumsraten von 1 nms 1 konnten in kürzester Zeit Filmdicken von mehr als einem µm hergestellt werden. TiNiSn zeigte den höchsten Leistungsfaktor von 0.4 mWK 2m 1 (550 K). Zusätzlich wurde bei Raumtemperatur mit Hilfe der differentiellen 3ω Methode eine thermische Leitfähigkeit von 2.8 Wm 1K 1 bestimmt. Es ist bekannt, dass die thermische Leitfähigkeit mit der Variation von Massen abnimmt. Weil zudem angenommen wird, dass sie durch Grenzflächenstreuung von Phononen ebenfalls reduziert wird, wurden Übergitter hergestellt. Dabei wurden TiNiSn und Zr0.5Hf0.5NiSn nacheinander abgeschieden. Die sehr hohe Kristallqualität der Übergitter mit ihren scharfen Grenzflächen konnte durch Satellitenpeaks und Transmissionsmikroskopie (STEM) nachgewiesen werden. Für ein Übergitter mit einer Periodizität von 21 nm (TiNiSn und Zr0.5Hf0.5NiSn jeweils 10.5 nm) ist bei einer Temperatur von 550 K ein Leistungsfaktor von 0.77 mWK 2m 1 nachgewiesen worden (α = 80 µVK 1; σ = 8.2 µΩm). Ein Übergitter mit der Periodizität von 8 nm hat senkrecht zu den Grenzflächen eine thermische Leitfähigkeit von 1 Wm 1K 1 aufgewiesen. Damit hat sich die Reduzierung der thermischen Leitfähigkeit durch die halb-Heusler Übergitter bestätigt. Durch die isoelektronischen Eigenschaften von Titan, Zirkonium und Hafnium wird angenommen, dass die elektrische Bandstruktur und damit der Leistungsfaktor senkrecht zu den Grenzflächen nur schwach beeinflusst wird.rn