934 resultados para Thermal lens measurements


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here the fabrication, charaterisation and refractive index sensing of two microchanneled chirped fiber Bragg gratings (MCFBGs) with different channel sizes (~550µm and ~1000µm). The chirped grating structures were UV-inscribed in optical fibre and the microchannels were created in the middle of the CFBGs by femtosecond (fs) laser assisted chemical etching method. The creation of microchannels in the CFBG structures gives an access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In comparison with previously reported FBG based RI sensors, for which the cladding layers usually were removed, the MCFBGs represent a more ideal solution for robust devices as the microchannel will not degrade the structure strength. The two MCFBGs were spectrally charaterised for their RI and temperature responses and both gratings exhibited unique thermal and RI sensitivities, which may be utilised for implementation of bio-chemical sensors with capability to eliminate temperature crosssensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately half of current contact lens wearers suffer from dryness and discomfort, particularly towards the end of the day. Contact lens practitioners have a number of dry eye tests available to help them to predict which of their patients may be at risk of contact lens drop out and advise them accordingly. This thesis set out to rationalize them to see if any are of more diagnostic significance than others. This doctorate has found: (1) The Keratograph, a device which permits an automated, examiner independent technique for measuring non invasive tear break up time (NITBUT) measured NITBUT consistently shorter than measurements recorded with the Tearscope. When measuring central corneal curvature the spherical equivalent power of the cornea was measured as being significantly flatter than with a validated automated keratometer. (2) Non-invasive and invasive tear break-up times significantly correlated to each other, but not the other tear metrics. Symptomology, assessed using the OSDI questionnaire, correlated more with those tests indicating possible damage to the ocular surface (including LWE, LIPCOF and conjunctival staining) than with tests of either tear volume or stability. Cluster analysis showed some statistically significant groups of patients with different sign and symptom profiles. The largest cluster demonstrated poor tear quality with both non-invasive and invasive tests, low tear volume and more symptoms. (3) Care should be taken in fitting patients new to contact lenses if they have a NITBUT less than 10s or an OSDI comfort rating greater than 4.2 as they are more likely to drop-out within the first 6 months. Cluster analysis was not found to be beneficial in predicting which patients will succeed with lenses and which will not. A combination of the OSDI questionnaire and a NITBUT measurement was most useful both in diagnosing dry eye and in predicting contact lens drop out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The aim was to investigate the effect on the measured amplitude of accommodation and repeatability of using the minus lens technique with the target at distance or near. Methods: Forty-three students (average age: 21.17 ± 1.50 years, 35 female) had their amplitude of accommodation measured with minus lenses on top of their distance correction in a trial frame with the target at far (6.0m) or near (0.4m). The minus lens power was gradually added with steps of 0.25D. Measurements were taken on two occasions at each distance, which were separated by a time interval of at least 24 hours. Results: The measured amplitude at six metres was significantly lower than that with the target at 40cm, by 1.56 ± 1.17D (p < 0.001) and this varied between individuals (r = 0.716, intraclass correlation coefficient = 0.439). With either target distance, repeated measurement was highly correlated (r > 0.9) but the agreement was better at 6.0m (±0.74D) than at 40cm (± 0.92D). Conclusion: The measurements of the amplitude of accommodation with the minus lens technique using targets at far or near are not comparable and the difference between the target distances may provide clinically relevant information. © 2013 Optometrists Association Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallocene ethylene-1-octene copolymers having different densities and comonomer content ranging from 11 to 36 wt% (m-LLDPE), and a Ziegler copolymer (z-LLDPE) containing the same level of short-chain branching (SCB) corresponding to one of the m-LLDPE polymers, were subjected to extrusion. The effects of temperature (210-285 °C) and multi-pass extrusions (up to five passes) on the rheological and structural characteristics of these polymers were investigated using melt index and capillary rheometry, along with spectroscopic characterisation of the evolution of various products by FTIR, C-NMR and colour measurements. The aim is to develop a better understanding of the effects of processing variables on the structure and thermal degradation of these polymers. Results from rheology show that both extrusion temperature and the amount of comonomer have a significant influence on the polymer melt thermo-oxidative behaviour. At low to intermediate processing temperatures, all m-LLDPE polymers exhibited similar behaviour with crosslinking reactions dominating their thermal oxidation. By contrast, at higher processing temperatures, the behaviour of the metallocene polymers changed depending on the level of comonomer content: higher SCB gave rise to predominantly chain scission reactions whereas polymers with lower level of SCB continued to be dominated by crosslinking. This temperature dependence was attributed to changes in the different evolution of carbonyl and unsaturated compounds including vinyl, vinylidene and trans-vinylene. © 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. The purpose of this study was to evaluate the longitudinal changes in ocular physiology, tear film characteristics, and symptomatology experienced by neophyte silicone hydrogel (SiH) contact lens wearers in a daily-wear compared with a continuous-wear modality and with the different commercially available lenses over an 18-month period. Methods. Forty-five neophyte subjects were enrolled in the study and randomly assigned to wear one of two SiH materials: lotrafilcon A or balafilcon A lenses on either a daily- (LDW; BDW) or continuous-wear (LCW; BCW) basis. Additionally, a group of noncontact lens-wearing subjects (control group) was also recruited and followed over the same study period. Objective and subjective grading of ocular physiology were carried out together with tear meniscus height (TMH) and noninvasive tear breakup time (NITBUT). Subjects also subjectively rated symptoms and judgments with lens wear. After initial screening, subsequent measurements were taken after 1, 3, 6, 12, and 18 months. Results. Subjective and objective grading of ocular physiology revealed a small increase in bulbar, limbal, and palpebral hyperemia as well as corneal staining over time with both lens materials and regimes of wear (p < 0.05). No significant changes in NITBUT or TMH were found (p > 0.05). Subjective symptoms and judgment were not material- or modality-specific. Conclusions. Daily and continuous wear of SiH contact lenses induced small but statistically significant changes in ocular physiology and symptomatology. Clinical measures of tear film characteristics were unaffected by lens wear. Both materials and regimes of wear showed similar clinical performance. Long-term SiH contact lens wear is shown to be a successful option for patients. Copyright © 2006 American Academy of Optometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To determine the dynamic emitted temperature changes of the anterior eye during and immediately after wearing different materials and modalities of soft contact lenses. Method: A dynamic, non-contact infrared camera (Thermo-Tracer TH7102MX, NEC San-ei) was used to record the ocular surface temperature (OST) in 48 subjects (mean age 21.7 ± 1.9 years) wearing: lotrafilcon-A contact lenses on a daily wear (LDW; n = 8) or continuous wear (LCW; n = 8) basis; balafilcon-A contact lenses on a daily wear (BDW; n = 8) or continuous wear (BCW; n = 8) basis; etafilcon-A contact lenses on a daily disposable regimen (EDW; n = 8); and no lenses (controls; n = 8). OST was measured continuously five times, for 8 s after a blink, following a minimum of 2 h wear and immediately following lens removal. Absolute temperature, changes in temperature post-blink and the dynamics of temperature changes were calculated. Results: OST immediately following contact lens wear was significantly greater compared to non-lens wearers (37.1 ± 1.7 °C versus 35.0 ± 1.1 °C; p < 0.005), predominantly in the LCW group (38.6 ± 1.0 °C; p < 0.0001). Lens surface temperature was highly correlated (r = 0.97) to, but lower than OST (by -0.62 ± 0.3 °C). There was no difference with modality of wear (DW 37.5 ± 1.6 °C versus CW 37.8 ± 1.9 °C; p = 0.63), but significant differences were found between etafilcon A and silicone hydrogel lens materials (35.3 ± 1.1 °C versus 37.5 ± 1.5 °C; p < 0.0005). Ocular surface cooling following a blink was not significantly affected by contact lens wear with (p = 0.07) or without (p = 0.47) lenses in situ. Conclusions: Ocular surface temperature is greater with hydrogel and greater still with silicone hydrogel contact lenses in situ, regardless of modality of wear. The effect is likely to be due to the thermal transmission properties of a contact lens. © 2004 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigated the effect of hydrogen termination on the electrical properties and impedance spectra of detonation nanodiamond. The impedance spectra revealed that the hydrogen-termination process increases the electrical conductivity by four orders of magnitude at room temperature. An equivalent circuit has been proposed to correlate with the conduction mechanism. Arrhenius plot showed that there were two different activation energy levels located at 0.089 eV and 0.63 eV between 50 °C and 400 °C. The possible physical mechanism corresponding to these activation energy levels has been discussed. Hydrogen-terminated detonation nanodiamond has been further annealed at different temperatures prior to FTIR and XPS measurements in order to understand their thermal stability. The results demonstrated that the surface oxidization occurred between 100 °C and 150 °C. However, the C-H bonds could partially survive when the temperature reaches 400 °C in air. © 2013 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of a thermal residual stress field on fatigue crack growth in a silicon carbide particle-reinforced aluminum alloy have been measured. Stress fields were introduced into plates of material by means of a quench from a solution heat-treatment temperature. Measurements using neutron diffraction have shown that this introduces an approximately parabolic stress field into the plates, varying from compressive at the surfaces to tensile in the center. Long fatigue cracks were grown in specimens cut from as-quenched plates and in specimens which were given a stress-relieving overaging heat treatment prior to testing. Crack closure levels for these cracks were determined as a function of the position of the crack tip in the residual stress field, and these are shown to differ between as-quenched and stress-relieved samples. By monitoring the compliance of the specimens during fatigue cycling, the degree to which the residual stresses close the crack has been evaluated. © 1995 The Minerals, Metals & Material Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fabrication of submicron-height sine-like relief of a trifocal diffractive zone plate using a nanoimprinting technique is studied. The zone plate is intended for use in combined trifocal diffractive-refractive lenses and provides the possibility to form trifocal intraocular lenses with predetermined light intensity distribution between foci. The optical properties of the designed zone plate having the optical powers 3 D, 0, -3D in the three main diffraction orders are theoretically and experimentally investigated. The results of the theoretical investigations are in good agreement with experimental measurements. The effects of the pupil size (lens diameter) as well as the wavelength-dependent behavior of the zone plate are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoindentation has become a common technique for measuring the hardness and elastic-plastic properties of materials, including coatings and thin films. In recent years, different nanoindenter instruments have been commercialised and used for this purpose. Each instrument is equipped with its own analysis software for the derivation of the hardness and reduced Young's modulus from the raw data. These data are mostly analysed through the Oliver and Pharr method. In all cases, the calibration of compliance and area function is mandatory. The present work illustrates and describes a calibration procedure and an approach to raw data analysis carried out for six different nanoindentation instruments through several round-robin experiments. Three different indenters were used, Berkovich, cube corner, spherical, and three standardised reference samples were chosen, hard fused quartz, soft polycarbonate, and sapphire. It was clearly shown that the use of these common procedures consistently limited the hardness and reduced the Young's modulus data spread compared to the same measurements performed using instrument-specific procedures. The following recommendations for nanoindentation calibration must be followed: (a) use only sharp indenters, (b) set an upper cut-off value for the penetration depth below which measurements must be considered unreliable, (c) perform nanoindentation measurements with limited thermal drift, (d) ensure that the load-displacement curves are as smooth as possible, (e) perform stiffness measurements specific to each instrument/indenter couple, (f) use Fq and Sa as calibration reference samples for stiffness and area function determination, (g) use a function, rather than a single value, for the stiffness and (h) adopt a unique protocol and software for raw data analysis in order to limit the data spread related to the instruments (i.e. the level of drift or noise, defects of a given probe) and to make the H and E r data intercomparable. © 2011 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To assess the impact of human crystalline lens opacification and yellowing, similar to that observed in patients with cataracts, on retinal vessel blood oxygen saturation measurements using custom manufactured soft contact lenses. METHODS: Ten healthy, non-smoking individuals were enrolled for this study. All subjects underwent digital blood pressure measurements, assessment of non-contact intra-ocular pressure, pupil dilation and retinal vessel oximetry using dual-wavelength photography (Oximetry Module, Imedos Systems). To simulate lens changes, three different contact lenses were inserted, one to simulate opacities followed by two more lenses to simulate different levels of lens yellowing (Cantor & Nissel). RESULTS: The measurements obtained showed an opposite change in arterial and venous oxygen saturation and optical density ratio across conditions, resulting in a statistically significant difference in arterial minus venous oxygen saturation value (p = 0.003). However, this difference was only significant for the 'opacity' condition but not for the 'yellowing' conditions. CONCLUSION: Lenticular changes such as cataracts can impact on spectrophotometric analysis in particular dual-wavelength retinal vessel oximetry. Hence, lenticular assessment and cataract grading should be considered when assessing elderly individuals and patient groups developing cataract earlier in life such as those suffering from diabetes mellitus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dimensional metrology, often the largest source of uncertainty of measurement is thermal variation. Dimensional measurements are currently scaled linearly, using ambient temperature measurements and coefficients of thermal expansion, to ideal metrology conditions at 20˚C. This scaling is particularly difficult to implement with confidence in large volumes as the temperature is unlikely to be uniform, resulting in thermal gradients. A number of well-established computational methods are used in the design phase of product development for the prediction of thermal and gravitational effects, which could be used to a greater extent in metrology. This paper outlines the theory of how physical measurements of dimension and temperature can be combined more comprehensively throughout the product lifecycle, from design through to the manufacturing phase. The Hybrid Metrology concept is also introduced: an approach to metrology, which promises to improve product and equipment integrity in future manufacturing environments. The Hybrid Metrology System combines various state of the art physical dimensional and temperature measurement techniques with established computational methods to better predict thermal and gravitational effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measure the radial profile of the photoelastic coefficient C(r) in single-mode polymer optical fibers (POFs), and we determine the evolution of C(r) after annealing the fibers at temperatures from 40°C to 80°C. We demonstrate that C(r) in the fibers drawn from a preform without specific thermal pre-treatment changes and converges to values between 1.2 and 1.6×10-12 Pa-1 following annealing at 80°C. The annealed fibers display a smoothened radial profile of C(r) and a lowered residual birefringence. In contrast, the mean value of C(r) of the fiber drawn from a preform that has been pre-annealed remains constant after our annealing process and is significantly higher, i.e., 4×10-12 Pa-1. The annealing process decreases the residual birefringence to a lower extent as well. These measurements indicate the impact of annealing on the thermal stability of the photoelastic coefficient of POFs, which is an essential characteristic in view of developing POF-based thermomechanical sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmaniasis is one of the most important emerging vector-borne diseases in Western Eurasia. Although winter minimum temperatures limit the present geographical distribution of the vector Phlebotomus species, the heat island effect of the cities and the anthropogenic heat emission together may provide the appropriate environment for the overwintering of sand flies. We studied the climate tempering effect of thermal bridges and the heat island effect in Budapest, Hungary. Thermal imaging was used to measure the heat surplus of heat bridges. The winter heat island effect of the city was evaluated by numerical analysis of the measurements of the Aqua sensor of satellite Terra. We found that the surface temperature of thermal bridges can be at least 3-7 °C higher than the surrounding environment. The heat emission of thermal bridges and the urban heat island effect together can cause at least 10 °C higher minimum ambient temperature in winter nights than the minimum temperature of the peri-urban areas. This milder micro-climate of the built environment can enable the potential overwintering of some important European Phlebotomus species. The anthropogenic heat emission of big cities may explain the observed isolated northward populations of Phlebotomus ariasi in Paris and Phlebotomus neglectus in the agglomeration of Budapest.