933 resultados para Thermal Remote Sensing, UHI-Urban Heat Island, LST-Land Surface Temperature, Classificazione, Emissività


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To analyze the impact of intra-urban atmospheric conditions on circulatory and respiratory diseases in elder adults. METHODS: Cross-sectional study based on data from 33,212 hospital admissions in adults over 60 years in the city of Sao Paulo, southeastern Brazil, from 2003 to 2007. The association between atmospheric variables from Congonhas airport and bioclimatic index, Physiological Equivalent Temperature, was analyzed according to the district's socioenvironmental profile. Descriptive statistical analysis and regression models were used. RESULTS: There was an increase in hospital admissions due to circulatory diseases as average and lowest temperatures decreased. The likelihood of being admitted to the hospital increased by 12% with 1 degrees C decrease in the bioclimatic index and with 1 degrees C increase in the highest temperatures in the group with lower socioenvironmental conditions. The risk of admission due to respiratory diseases increased with inadequate air quality in districts with higher socioenvironmental conditions. CONCLUSIONS: The associations between morbidity and climate variables and the comfort index varied in different groups and diseases. Lower and higher temperatures increased the risk of hospital admission in the elderly. Districts with lower socioenvironmental conditions showed greater adverse health impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of Sao Paulo (MASP, population 20 million) accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL) depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 x 10(4)-3.2 x 10(4) cm(-3) frequently exceeding 4 x 10(4) cm-3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC) were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength) varied in the range 12-33 Mm(-1) and 21-64 Mm(-1), respectively. The former one is equal to 1.8-5.0 mu g m(-3) of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (omega(0)) varied in the range 0.59-0.76. Overall, this suggests a top of atmosphere (TOA) warming effect. However, considering the low surface reflectance of urban areas, for the given range of omega(0), the TOA radiative forcing can be either positive or negative for the sources within the MASP. On the average, weekend omega(0) values were 0.074 higher than during weekdays. During 11% of the days, new particle formation (NPF) events occurred. The analysed events growth rates ranged between 9 and 25 nm h(-1). Sulphuric acid proxy concentrations calculated for the site were less than 5% of the concentration needed to explain the observed growth. Thus, other vapours are likely contributors to the observed growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed at enumerating molds (heat-labile and heat-resistant) on the surface of paperboard material to be filled with tomato pulps through an aseptic system and at determining the most heat-and hydrogen peroxide-resistant strains. A total of 118 samples of laminated paperboard before filling were collected, being 68 before and 50 after the hydrogen peroxide bath. Seven molds, including heat-resistant strains (Penicillium variotii and Talaromyces flavus) with counts ranging between 0.71 and 1.02 CFU/cm(2) were isolated. P. variotii was more resistant to hydrogen peroxide than T. flavus and was inactivated after heating at 85 degrees C/15 min. When exposed to 35 % hydrogen peroxide at 25 degrees C, T. flavus (F5E2) and N. fischeri (control) were less resistant than P. variotti (F1A1). P. citrinum (F7E2) was shown to be as resistant as P. variotti. The D values (the time to cause one logarithmic cycle reduction in a microbial population at a determined temperature) for spores of P. variotii (F1A1) and N. fischeri (control) with 4 months of age at 85 and 90 degrees C were 3.9 and 4.5 min, respectively. Although the contamination of packages was low, the presence of heat-and chemical-resistant molds may be of concern for package sterility and product stability during shelf-life. To our knowledge, this is the first report that focuses on the isolation of molds, including heat-resistant ones, contaminating paperboard packaging material and on estimating their resistance to the chemical and physical processes used for packaging sterilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis develops an effective modeling and simulation procedure for a specific thermal energy storage system commonly used and recommended for various applications (such as an auxiliary energy storage system for solar heating based Rankine cycle power plant). This thermal energy storage system transfers heat from a hot fluid (termed as heat transfer fluid - HTF) flowing in a tube to the surrounding phase change material (PCM). Through unsteady melting or freezing process, the PCM absorbs or releases thermal energy in the form of latent heat. Both scientific and engineering information is obtained by the proposed first-principle based modeling and simulation procedure. On the scientific side, the approach accurately tracks the moving melt-front (modeled as a sharp liquid-solid interface) and provides all necessary information about the time-varying heat-flow rates, temperature profiles, stored thermal energy, etc. On the engineering side, the proposed approach is unique in its ability to accurately solve – both individually and collectively – all the conjugate unsteady heat transfer problems for each of the components of the thermal storage system. This yields critical system level information on the various time-varying effectiveness and efficiency parameters for the thermal storage system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared thermography is a well-recognized non-destructive testing technique for evaluating concrete bridge elements such as bridge decks and piers. However, overcoming some obstacles and limitations are necessary to be able to add this invaluable technique to the bridge inspector's tool box. Infrared thermography is based on collecting radiant temperature and presenting the results as a thermal infrared image. Two methods considered in conducting an infrared thermography test include passive and active. The source of heat is the main difference between these two approaches of infrared thermography testing. Solar energy and ambient temperature change are the main heat sources in conducting a passive infrared thermography test, while active infrared thermography involves generating a temperature gradient using an external source of heat other than sun. Passive infrared thermography testing was conducted on three concrete bridge decks in Michigan. Ground truth information was gathered through coring several locations on each bridge deck to validate the results obtained from the passive infrared thermography test. Challenges associated with data collection and processing using passive infrared thermography are discussed and provide additional evidence to confirm that passive infrared thermography is a promising remote sensing tool for bridge inspections. To improve the capabilities of the infrared thermography technique for evaluation of the underside of bridge decks and bridge girders, an active infrared thermography technique using the surface heating method was developed in the laboratory on five concrete slabs with simulated delaminations. Results from this study demonstrated that active infrared thermography not only eliminates some limitations associated with passive infrared thermography, but also provides information regarding the depth of the delaminations. Active infrared thermography was conducted on a segment of an out-of-service prestressed box beam and cores were extracted from several locations on the beam to validate the results. This study confirms the feasibility of the application of active infrared thermography on concrete bridges and of estimating the size and depth of delaminations. From the results gathered in this dissertation, it was established that applying both passive and active thermography can provide transportation agencies with qualitative and quantitative measures for efficient maintenance and repair decision-making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The urban transition almost always involves wrenching social adjustment as small agricultural communities are forced to adjust rapidly to industrial ways of life. Large-scale in-migration of young people, usually from poor regions, creates enormous demand and expectations for community and social services. One immediate problem planners face in approaching this challenge is how to define, differentiate, and map what is rural, urban, and transitional (i.e., peri-urban). This project established an urban classification for Vietnam by using national census and remote sensing data to identify and map the smallest administrative units for which data are collected as rural, peri-urban, urban, or urban core. We used both natural and human factors in the quantitative model: income from agriculture, land under agriculture and forests, houses with modern sanitation, and the Normalized Difference Vegetation Index. Model results suggest that in 2006, 71% of Vietnam's 10,891 communes were rural, 18% peri-urban, 3% urban, and 4% urban core. Of the communes our model classified as peri-urban, 61% were classified by the Vietnamese government as rural. More than 7% of Vietnam's land area can be classified as peri-urban and approximately 13% of its population (more than 11 million people) lives in peri-urban areas. We identified and mapped three types of peri-urban places: communes in the periphery of large towns and cities; communes along highways; and communes associated with provincial administration or home to industrial, energy, or natural resources projects (e.g., mining). We validated this classification based on ground observations, analyses of multi-temporal night-time lights data, and an examination of road networks. The model provides a method for rapidly assessing the rural–urban nature of places to assist planners in identifying rural areas undergoing rapid change with accompanying needs for investments in building, sanitation, road infrastructure, and government institutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thawing-induced cliff top retreat in permafrost landscapes is mainly due to thermo-erosion. Ground-ice-rich permafrost landscapes are specifically vulnerable to thermo-erosion and may show high degradation rates. Within the HGF Alliance Remote Sensing and the FP7 PAGE21 permafrost programs we investigated how SAR and optical remote sensing can contribute to the monitoring of erosion rates of ice-rich cliffs in Arctic Siberia (Lena Delta, Russia). We produced two different vector products: i) Intra-annual cliff top retreat based on TerraSAR-X (TSX) satellite data (2012-2014): High-temporal resolution time series of TSX satellite data allow the inter-annual and intra-annual monitoring of the upper cliff-line retreat also under bad weather conditions and continuous cloud coverage. This published SAR product contains the retreating upper cliff lines of a 1.5 km long part of eroding ice-rich coast of Kurungnakh Island in the central Lena Delta. The upper cliff line was mapped using a thresholding approach for images acquired in the years 2012, 2013 and 2014 for the months June (2013, 2014), July (2013, 2014), August (2012, 2013, 2014) and September (2013, 2014). The cliff top retreat vector product is called 'upper_cliff_TerraSAR-X'. While the 2014 cliff lines show a clear retreat of 2 to 3 m/month, the cliff top lines for 2012 and 2013 are not chronologically ordered. However, lines from the end of the season of a year are always close to the lines from the beginning of the next summer season, indicating low cliff retreat in winter. ii) 4-year cliff top retreat based on optical satellite data (2010-2014): Long-term cliff top retreat could be assessed with two high-spatial resolution optical satellite images (GeoEye-1, 2010-08-05 and Worldview-1, 2014-08-19). The cliff top retreat vector product is called 'upper_cliff_optical'. Results: The long-term cliff top retreat derived from optical satellite data are 35 m cliff retreat within 4 years. The higher-temporal resolution SAR data equivalently show long-term rates of 18 m within 2 years and nearly now degradation activities in winter but maximum erosion rates in summer months.The Intra-seasonal cliff top retreat lines from 2014 show a rate of 2 to 3 m per month.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sea Ice Mass Balance in the Antarctic (SIMBA) experiment was conducted from the RVIB N.B. Palmer in September and October 2007 in the Bellingshausen Sea in an area recently experiencing considerable changes in both climate and sea ice cover. Snow and ice properties were observed at 3 short-term stations and a 27-day drift station (Ice Station Belgica, ISB) during the winter-spring transition. Repeat measurements were performed on sea ice and snow cover at 5 ISB sites, each having different physical characteristics, with mean ice (snow) thicknesses varying from 0.6 m (0.1 m) to 2.3 m (0.7 m). Ice cores retrieved every five days from 2 sites and measured for physical, biological, and chemical properties. Three ice mass-balance buoys (IMBs) provided continuous records of snow and ice thickness and temperature. Meteorological conditions changed from warm fronts with high winds and precipitation followed by cold and calm periods through four cycles during ISB. The snow cover regulated temperature flux and controlled the physical regime in which sea ice morphology changed. Level thin ice areas had little snow accumulation and experienced greater thermal fluctuations resulting in brine salinity and volume changes, and winter maximum thermodynamic growth of ~0.6 m in this region. Flooding and snow-ice formation occurred during cold spells in ice and snow of intermediate thickness. In contrast, little snow-ice formed in flooded areas with thicker ice and snow cover, instead nearly isothermal, highly permeable ice persisted. In spring, short-lived cold air episodes did not effectively penetrate the sea ice nor overcome the effect of ocean heat flux, thus favoring net ice thinning from bottom melt over ice thickening from snow-ice growth, in all cases. These warm ice conditions were consistent with regional remote sensing observations of earlier ice breakup and a shorter sea ice season, more recently observed in the Bellingshausen Sea.