871 resultados para Therapeutic potential
Resumo:
Water Sensitive Urban Design (WSUD) practices such as wetlands, bioretention systems and swales are widely implemented in Australia’s urban areas for the mitigation of stormwater pollution and to enhance its reuse potential. In-depth research undertaken has confirmed that these systems do not always perform according to design expectations due to a diversity of reasons. To deliver anticipated benefits, it is critical that they are designed in conformity with catchment and rainfall characteristics and pollutant processes. This in turn entails an in-depth understanding of key pollutant processes. This paper presents the outcomes of extensive research investigations on pollutant characterisation and stormwater pollutant processes on urban catchment surfaces. Outcomes from the research studies revealed the complexities in physical and chemical characteristics of pollutants originating from urban catchments which are strongly influenced by rainfall and catchment characteristics. Based on the research outcomes, recommendations are provided to enhance stormwater treatment performance and to enhance its reuse potential.
Decoupled trajectory planning for a submerged rigid body subject to dissipative and potential forces
Resumo:
This paper studies the practical but challenging problem of motion planning for a deeply submerged rigid body. Here, we formulate the dynamic equations of motion of a submerged rigid body under the architecture of differential geometric mechanics and include external dissipative and potential forces. The mechanical system is represented as a forced affine-connection control system on the configuration space SE(3). Solutions to the motion planning problem are computed by concatenating and reparameterizing the integral curves of decoupling vector fields. We provide an extension to this inverse kinematic method to compensate for external potential forces caused by buoyancy and gravity. We present a mission scenario and implement the theoretically computed control strategy onto a test-bed autonomous underwater vehicle. This scenario emphasizes the use of this motion planning technique in the under-actuated situation; the vehicle loses direct control on one or more degrees of freedom. We include experimental results to illustrate our technique and validate our method.
Resumo:
Recent studies have demonstrated that IGF-I associates with VN through IGF-binding proteins (IGFBP) which in turn modulate IGF-stimulated biological functions such as cell proliferation, attachment and migration. Since IGFs play important roles in transformation and progression of breast tumours, we aimed to describe the effects of IGF-I:IGFBP:VN complexes on breast cell function and to dissect mechanisms underlying these responses. In this study we demonstrate that substrate-bound IGF-I:IGFBP:VN complexes are potent stimulators of MCF-7 breast cell survival, which is mediated by a transient activation of ERK/MAPK and sustained activation of PI3-K/AKT pathways. Furthermore, use of pharmacological inhibitors of the MAPK and PI3-K pathways confirms that both pathways are involved in IGF-I:IGFBP:VN complex-mediated increased cell survival. Microarray analysis of cells stimulated to migrate in response to IGF-I:IGFBP:VN complexes identified differential expression of genes with previously reported roles in migration, invasion and survival (Ephrin-B2, Sharp-2, Tissue-factor, Stratifin, PAI-1, IRS-1). These changes were not detected when the IGF-I analogue (\[L24]\[A31]-IGF-I), which fails to bind to the IGF-I receptor, was substituted; confirming the IGF-I-dependent differential expression of genes associated with enhanced cell migration. Taken together, these studies have established that IGF-I:IGFBP:VN complexes enhance breast cell migration and survival, processes central to facilitating metastasis. This study highlights the interdependence of ECM and growth factor interactions in biological functions critical for metastasis and identifies potential novel therapeutic targets directed at preventing breast cancer progression.
Resumo:
Many people with severe mental illness (SMI) such as schizophrenia, whose psychotic symptoms are effectively managed, continue to experience significant functional problems. This chapter argues that low intensity (LI) cognitive behaviour therapy (CBT; e.g. for depression, anxiety, or other issues) is applicable to these clients, and that LI CBT can be consistent with long-term case management. However, adjustments to LI CBT strategies are often necessary and boundaries between LI CBT and high intensity (HI) CBT (with more extensive practitioner contact and complexity) may become blurred. Our focus is on LI CBT's self-management emphasis, its restricted content and segment length, and potential use after limited training. In addition to exploring these issues, it draws on the authors' Collaborative Recovery (CR; Oades et al. 2005) and 'Start Over and Survive' programs (Kavanagh et al. 2004) as examples. ----- ----- Evidence for the effectiveness of LI CBT with severe mental illness is often embedded within multicomponent programs. For example, goal setting and therapeutic homework are common components of such programs, but they can also be used as discrete LI CBT interventions. A review of 40 randomised controlled trials involving recipients with schizophrenia or other sever mental illnesses has identified key components of illness management programs (Mueser et al. 2002). However, it is relatively rare for specific components of these complex interventions to be assessed in isolation. Given these constraints, the evidence for specific LI CBT interventions with severe mental ilnness is relatively limited.
Resumo:
Motivational interviewing (MI)can be applied as a brief, low intensity (LI) intervention of 1-4 individualised sessions (typically 45-60 minutes in duration), including screening, assessment feedback, and psycho-education. MI is a client-centred, directive therapeutic style that enhances readiness for change by helping clients explore and resolve ambivalence (Miller and Rollnick 2002). A summary of the key components of brief MI interventions is provided in Table 16.1. There is a well-established evidence base for MI in the treatment of substance misuse (particularly alcohol misuse; Moyer et al. 2002), as well as a growing evidence for the use of MI in the treatment of other mental disorders (e.g. depression, PTSD, OCD), as well as suicidality and physical health problems (Hettema et al. 2005). Brief MI intervention can be delivered as a standalone treatment or as a motivational prelude to pharmacological and/or other psychological treatments (Hettema et al. 2005). MI has been used as an accompaniment to cognitive behavioural therapy (CBT) in the treatment of both depression and anxiety for resolving ambivalence about change and developing strategies for responding to resistance (e.g. treatment attendance, homework/medication compliance; Arkowitz et al. 2008a, 2008b). This chapter will describe how to apply brief MI interventions to the treatment of depression and anxiety as applied to the case of Megan (see Box 16.1) along with some of the challenges and potential solutions to applying MI in practice.
Resumo:
Cell based therapies as they apply to tissue engineering and regenerative medicine, require cells capable of self renewal and differentiation, and a prerequisite is to be able to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies therefore figures as an integral part of tissue engineering. Stem cells serve as a reserve for biological repair, having the potential to differentiate into a number of specialised cell types within the body; they therefore represent the most useful candidates for cell based therapies. The primary goal of stem cell research is to produce cells that are both patient specific, as well as having properties suitable for the specific conditions for which they are intended to remedy. From a purely scientific perspective, stem cells allow scientists to gain a deeper understanding of developmental biology and regenerative therapies. Stem cells have acquired a number of uses for applications in regenerative medicine, immunotherapy, gene therapy, but it is in the area of tissue engineering that they generate most excitement, primarily as a result of their capacity for self-renewal and pluripotency. A unique feature of stem cells is their ability to maintain an uncommitted quiescent state in vivo and then, once triggered by conditions such as disease, injury or natural wear or tear, serve as a reservoir and natural support system to replenish lost cells. Although these cells retain the plasticity to differentiate into various tissues, being able to control this differentiation process is still one of the biggest challenges facing stem cell research. In an effort to harness the potential of these cells a number of studies have been conducted using both embryonic/foetal and adult stem cells. The use of embryonic stem cells (ESC) have been hampered by strong ethical and political concerns, this despite their perceived versatility due to their pluripotency. Ethical issues aside, other concerns raised with ESCs relates to the possibility of tumorigenesis, immune rejection and complications with immunosuppressive therapies, all of which adds layers of complications to the application ESC in research and which has led to the search for alternative sources for stem cells. The adult tissues in higher organisms harbours cells, termed adult stem cells, and these cells are reminiscent of unprogrammed stem cells. A number of sources of adult stem cells have been described. Bone marrow is by far the most accessible source of two potent populations of adult stem cells, namely haematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BMSCs). Autologously harvested adult stem cells can, in contrast to embryonic stem cells, readily be used in autografts, since immune rejection is not an issue; and their use in scientific research has not attracted the ethical concerns which have been the case with embryonic stem cells. The major limitation to their use, however, is the fact that adult stem cells are exceedingly rare in most tissues. This fact makes identifying and isolating these cells problematic; bone marrow being perhaps the only notable exception. Unlike the case of HSCs, there are as yet no rigorous criteria for characterizing MSCs. Changing acuity about the pluripotency of MSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to MSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their study in vitro. Also, when MSCs are cultured in vitro, there is a loss of the in vivo microenvironment, resulting in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage numbers in culture, characterized by the onset of senescence related changes. As a consequence, it is necessary to establish protocols for generating large numbers of MSCs but without affecting their differentiation potential. MSCs are capable of differentiating into mesenchymal tissue lineages, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Recent findings indicate that adult bone marrow may also contain cells that can differentiate into the mature, nonhematopoietic cells of a number of tissues, including cells of the liver, kidney, lung, skin, gastrointestinal tract, and myocytes of heart and skeletal muscle. MSCs can readily be expanded in vitro and can be genetically modified by viral vectors and be induced to differentiate into specific cell lineages by changing the microenvironment–properties which makes these cells ideal vehicles for cellular gene therapy. MSCs can also exert profound immunosuppressive effects via modulation of both cellular and innate immune pathways, and this property allows them to overcome the issue of immune rejection. Despite the many attractive features associated with MSCs, there are still many hurdles to overcome before these cells are readily available for use in clinical applications. The main concern relates to in vivo characterization and identification of MSCs. The lack of a universal biomarker, sparse in vivo distribution, and a steady age related decline in their numbers, makes it an obvious need to decipher the reprogramming pathways and critical molecular players which govern the characteristics unique to MSCs. This book presents a comprehensive insight into the biology of adult stem cells and their utility in current regeneration therapies. The adult stem cell populations reviewed in this book include bone marrow derived MSCs, adipose derived stem cells (ASCs), umbilical cord blood stem cells, and placental stem cells. The features such as MSC circulation and trafficking, neuroprotective properties, and the nurturing roles and differentiation potential of multiple lineages have been discussed in details. In terms of therapeutic applications, the strengths of MSCs have been presented and their roles in disease treatments such as osteoarthritis, Huntington’s disease, periodontal regeneration, and pancreatic islet transplantation have been discussed. An analysis comparing osteoblast differentiation of umbilical cord blood stem cells and MSCs has been reviewed, as has a comparison of human placental stem cells and ASCs, in terms of isolation, identification and therapeutic applications of ASC in bone, cartilage regeneration, as well as myocardial regeneration. It is my sincere hope that this book will update the reader as to the research progress of MSC biology and potential use of these cells in clinical applications. It will be the best reward to all contributors of this book, if their efforts herein may in some way help the readers in any part of their study, research, and career development.
Resumo:
This article examines the problem of patent ambush in standard setting, where patent owners are sometimes able to capture industry standards in order to secure monopoly power and windfall profits. Because standardisation generally introduces high switching costs, patent ambush can impose significant costs on downstream manufacturers and consumers and drastically reduce the efficiency gains of standardisation.This article considers how Australian competition law is likely to apply to patent ambush both in the development of a standard (through misrepresenting the existence of an essential patent) and after a standard is implemented (through refusing to license an essential patented technology either at all or on reasonable and non-discriminatory (RAND) terms). This article suggests that non-disclosure of patent interests is unlikely to restrained by Part IV of the Trade Practices Act (TPA), and refusals to license are only likely to be restrained if the refusal involves leveraging or exclusive dealing. By contrast, Standard Setting Organisations (SSOs) which seek to limit this behaviour through private ordering may face considerable scrutiny under the new cartel provisions of the TPA. This article concludes that SSOs may be best advised to implement administrative measures to prevent patent hold-up, such as reviewing which patents are essential for the implementation of a standard, asking patent holders to make their licence conditions public to promote transparency, and establishing forums where patent licensees can complain about licence terms that they consider to be unreasonable or discriminatory. Additionally, the ACCC may play a role in authorising SSO policies that could otherwise breach the new cartel provisions, but which have the practical effect of promoting competition in the standards setting environment.
Resumo:
Speeding in school zones is a problem in both Malaysia and Australia. While there are differences between the countries in terms of school zone treatments and more generally, these differences do not explain why people choose to speed in school zones. Because speeding is usually an intentional behaviour, the Theory of Planned Behaviour (TPB) has been used to understand speeding and develop interventions, however it has limitations which can be addressed by extending the model to incorporate other constructs. One promising construct is mindfulness, which can improve the explanatory value of the TPB by taking into account unintentional speeding attributable to a lack of focus on important elements of the driving environment. We explain what mindfulness is (and is not), how it can assist in providing a better understanding of speeding in school zones, and how it can contribute to the development of interventions. We then outline a program of research which has been commenced, investigating the contribution of mindfulness to an understanding of speed choice in school zones in two different settings (Australia and Malaysia) using the TPB.
Resumo:
Leadership research demonstrates that there are serious shortcomings in the quality and competence of leaders in our organizations. The recent global financial crisis has also reminded us that, if our society and economies are to move forward sustainability, we must have the right kind of leaders and the right kind of leadership throughout our organizations. "The Leader in You: Developing Your Leadership Potential" has been framed to be useful to all individuals who are currently in leadership roles, from chief executives to frontline managers, and for those who wish to step up to a leadership role. Organizations can also utilize this book to assist their leaders to increase their leadership potential or to complement leadership development programs. If you want to search for and develop leadership qualities in yourself, then this book is for you. If you want to set a higher standard in your organization and you think leadership is a serious matter in the lives of other people, then this book is for you. In the process of self-reflection, "The Leader in You: Developing Your Leadership Potential" will enable you to develop an individual leadership profile and an individual skills profile, culminating in the development of a plan for leadership improvement. This book aims to couple these outcomes with exposure to some practical skills that leaders need to lead in every day environments. The first four chapters allow the reader to develop an understanding of the concepts that underpin leadership performance, and to undertake exercises to develop a comprehensive understanding of their values, behaviors and personality. That is, to understand who they are and why they behave the way they do. An individual leadership profile is developed at the end of these chapters. Then, the remaining chapters look at issues that leaders will face in contemporary society, and at the skills required to address them in everyday environments. An individual skills profile is developed at the end of these chapters culminating in the development of a plan for leadership improvement.
Resumo:
This paper critiques our experiences as non-Indigenous Australian educators of working with numerous embedding Indigenous perspectives curricular projects at an Australian university. Reporting on these project outcomes alone, while useful in identifying limitations, does not illustrate ways in which future embedding and decolonising projects can persist and evolve. Deeper analysis is required of the ways in which Indigenous knowledge and perspectives are perceived, and what ‘embedding’ IK in university curricula truly means to various educational stakeholders. To achieve a deeper analysis and propose ways to invigorate the continuing decolonisation of Australian university curricula, this paper critically interrogates the methodology and conceptualisation of Indigenous knowledge in embedding Indigenous perspectives (EIP) in the university curriculum using tenets of critical race theory. Accordingly, we conduct this analysis from the standpoint that EIP should not subscribe to the luxury of independence of scholarship from politics and activism. The learning objective is to create a space to legitimise politics in the intellectual / academic realm (Dei, 2008, p. 10). We conclude by arguing that critical race theory’s emancipatory, future and action-oriented goals for curricula (Dei, 2008) would enhance effective and sustainable embedding initiatives, and ultimately, preventing such initiatives from returning to the status quo (McLaughlin & Whatman, 2008).
Resumo:
The use of mesoporous bioactive glasses (MBG) for drug delivery and bone tissue regeneration has grown significantly over the past 5 years. In this review, we highlight the recent advances made in the preparation of MBG particles, spheres, fibers and scaffolds. The advantages of MBG for drug delivery and bone scaffold applications are related to this material’s well-ordered mesopore channel structure, superior bioactivity, and the application for the delivery of both hydrophilic and hydrophobic drugs. A brief forward-looking perspective on the potential clinical applications of MBG in regenerative medicine is also discussed.
Resumo:
Hyperthermia and local drug delivery have been proposed the potential therapeutic approaches for bone defects resulting from malignant bone tumors. Development of bioactive materials with magnetic and drug-delivery properties may potentially meet this target. The aim of this study is to develop a multifunctional mesoporous bioactive glass (MBG) scaffold system for both hyperthermia and local-drug delivery application potentially. For this aim, Iron (Fe) containing MBG (Fe-MBG) scaffolds with hierarchically large pores (300-500 µm) and fingerprint-like mesopores (4.5 nm) have been successfully prepared. The effect of Fe on the mesopore structure, physiochemical, magnetism, drug delivery and biological properties of MBG scaffolds has been systematically investigated. The results showed that the morphology of the mesopore varied from straight channels to curved fingerprint-like channels after incorporated parts of Fe into MBG scaffolds. The magnetism magnitude of MBG scaffolds can be tailored by controlling Fe contents. Furthermore, the incorporating of Fe into mesoporous MBG glass scaffolds enhanced the mitochondrial activity and bone-relative gene (ALP and OCN) expression of human bone marrow mesenchymal stem cells (BMSCs) on the scaffolds. The obtained Fe-MBG scaffolds also possessed high specific surface areas and sustained drug delivery. Therefore, Fe-MBG scaffolds are magnetic, degradable and bioactive. The multifunction of Fe-MBG scaffolds indicates that there is a great potential for Fe-MBG scaffolds to be used for the therapy and regeneration of large-bone defects caused by malignant bone tumors through the combination of hyperthermia, local drug delivery and their osteoconductivity.