879 resultados para Techniques energy rehabilitation of buildings
Resumo:
The following activities are specifically identified as ineligible. 1. Construction of buildings, or portions thereof, used predominantly for the general conduct of government (e.g., city halls, courthouses, jails, police stations). 2. General government expenses. 3. Costs of operating and maintaining public facilities and services (e.g., mowing parks, replacing street light bulbs). 4. Servicing or refinancing of existing debt.
Resumo:
Mode of access: Internet.
Resumo:
World and UK energy resources and use are reviewed and the role of energy conservation in energy policy identified. In considering various energy conservation measures, a distinction is made between energy intensive and non-intensive industries and also between direct and indirect uses of energy. Particular attention is given to the non-intensive user of energy. Energy use on one such industrial site has been studied to determine the most effective energy saving measures in the short term. Here it is estimated that over 65% of energy is consumed for indirect purposes, mainly for heating and lighting buildings. Emphasis is placed on energy auditing techniques and those energy saving measures requiring greater technical, economic and organisational resources to secure their implementation. Energy auditing techniques include the use of aerial thermography and snow formation surveys to detect heat losses. Qualitative and quantitative interpretations are carried out, but restricted mainly to evaluating building roof heat losses. From the energy auditing exercise, it is confirmed that the intermittent heating of buildings is the largest and most cost effective fuel saving measure. This was implemented on the site and a heat monitoring programme established to verify results. Industrial combined heat and power generation is investigated. A proposal for the site demonstrates that there are several obstacles to its successful implementation. By adopting an alternative financial rationale, a way of overcoming these obstacles is suggested. A useful by-product of the study is the classification of industrial sites according to the nature of industrial energy demand patterns. Finally, energy saving measures implemented on the site are quantlfied using comparative verification methods. Overall fuel savings of 13% are indicated. Cumulative savings in heating fuel amount to 26% over four years although heated area increased by approximately 25%.
Resumo:
Energy consumption in wireless networks, and in particular in cellular mobile networks, is now of major concern in respect of their potential adverse impact upon the environment and their escalating operating energy costs. The recent phenomenal growth of data services in cellular mobile networks has exacerbated the energy consumption issue and is forcing researchers to address how to design future wireless networks that take into account energy consumption constraints. One fundamental approach to reduce energy consumption of wireless networks is to adopt new radio access architectures and radio techniques. The Mobile VCE (MVCE) Green Radio project, established in 2009, is considering such new architectural and technical approaches. This paper reports highlights the key research issues pursued in the MVCE Green Radio project.
Resumo:
Funded by European Research Council ERC. Grant Number: project GA 335910 VEWA
Resumo:
Funded by European Research Council ERC. Grant Number: project GA 335910 VEWA
Resumo:
Environmental friendly renewable energy plays an indispensable role in energy industry development. Foreign direct investment (FDI) in advanced renewable energy technology spillover is promising to improve technological capability and promote China’s energy industry performance growth. In this paper, the impacts of FDI renewable energy technology spillover on China’s energy industry performance are analyzed based on theoretical and empirical studies. Firstly, three hypotheses are proposed to illustrate the relationships between FDI renewable energy technology spillover and three energy industry performances including economic, environmental, and innovative performances. To verify the hypotheses, techniques including factor analysis and data envelopment analysis (DEA) are employed to quantify the FDI renewable energy technology spillover and the energy industry performance of China, respectively. Furthermore, a panel data regression model is proposed to measure the impacts of FDI renewable energy technology spillover on China’s energy industry performance. Finally, energy industries of 30 different provinces in China based on the yearbook data from 2005 to 2011 are comparatively analyzed for evaluating the impacts through the empirical research. The results demonstrate that FDI renewable energy technology spillover has positive impacts on China’s energy industry performance. It can also be found that the technology spillover effects are more obvious in economic and technological developed regions. Finally, four suggestions are provided to enhance energy industry performance and promote renewable energy technology spillover in China.
Resumo:
The renewable energy sources (RES) will play a vital role in the future power needs in view of the increasing demand of electrical energy and depletion of fossil fuel with its environmental impact. The main constraints of renewable energy (RE) generation are high capital investment, fluctuation in generation and requirement of vast land area. Distributed RE generation on roof top of buildings will overcome these issues to some extent. Any system will be feasible only if it is economically viable and reliable. Economic viability depends on the availability of RE and requirement of energy in specific locations. This work is directed to examine the economic viability of the system at desired location and demand.
Resumo:
the work towards increased energy efficiency. In order to plan and perform effective energy renovation of the buildings, it is necessary to have adequate information on the current status of the buildings in terms of architectural features and energy needs. Unfortunately, the official statistics do not include all of the needed information for the whole building stock. This paper aims to fill the gaps in the statistics by gathering data from studies, projects and national energy agencies, and by calibrating TRNSYS models against the existing data to complete missing energy demand data, for countries with similar climate, through simulation. The survey was limited to residential and office buildings in the EU member states (before July 2013). This work was carried out as part of the EU FP7 project iNSPiRe. The building stock survey revealed over 70% of the residential and office floor area is concentrated in the six most populated countries. The total energy consumption in the residential sector is 14 times that of the office sector. In the residential sector, single family houses represent 60% of the heated floor area, albeit with different share in the different countries, indicating that retrofit solutions cannot be focused only on multi-family houses. The simulation results indicate that residential buildings in central and southern European countries are not always heated to 20 °C, but are kept at a lower temperature during at least part of the day. Improving the energy performance of these houses through renovation could allow the occupants to increase the room temperature and improve their thermal comfort, even though the potential for energy savings would then be reduced.
Resumo:
This article presents the methodology and main results obtained in Spain within the FORMAR project, a European-funded project under the Leonardo Da Vinci scheme (Lifelong Learning Programme), whose main goal is to jointly develop training resources and modules to improve the skills on sustainability issues of buildings maintenance and refurbishment workers, in three different European countries: Spain, Portugal (Project Coordinator) and France. The Units of Short-term Training (UST) developed within this project are focused on the VET of carpenters, painters, bricklayers, building technicians and installers of solar panels, and a transversal unit containing basic concepts on sustainable construction and nearly Zero Energy Buildings (n-ZEB) is also developed. In parallel, clients’ guides for the aforementioned professionals are also implemented to improve the information provided to clients and owners in order to support the procurement decisions regarding building products and materials. Therefore, the project provides an opportunity to exchange experiences between organizations of these three European countries, as the UST will be developed simultaneously in each of them, exploring opportunities for training, guidance and exchange of experience. Even though the UST will have a common structure and contents, they will be slightly different in each country to adapt them to the different specific training needs and regulations of Spain, Portugal and France. This paper details, as a case study, the development process of the UST for carpenters and building technicians in Spain, including the analysis of needs and existing training materials, the main contents developed and the evaluation and testing process of the UST, which involves the active participation of several stakeholders of this sector as well as a classroom testing to obtain the students’ feedback.
Resumo:
In this thesis project, a building in Vegagatan 12, Gävle has been analysed in order to see why it does consume more energy than it was expected. This building is a low energy building certified by Miljöbyggnad and it should use less than 55kWh/m2 year and nowadays it is using 62.23 kWh/m2. To get the needed data, some information about the building has been gathered, some measurements have been done in the building and some calculations have been done with those measurements. Finally, some possible solutions have been offered to reduce the energy use of the building. Insulating the floor, the pipes and the walls, reducing the indoor temperature in winter... All of these changes need the help of environmentally friendly attitudes, which is a very important fact in low energy buildings.
Resumo:
The European program HORIZON2020 aims to have 20% of electricity produced by renewable sources. The building sector represents 40% of the European Union energy consumption. Reducing energy consumption in buildings is therefore a priority for energy efficiency. The present investigation explores the most adequate roof shapes compatible with the placement of different types of small wind energy generators on high-rise buildings for urban wind energy exploitation. The wind flow around traditional state-of-the-art roof shapes is considered. In addition, the influence of the roof edge on the wind flow on high-rise buildings is analyzed. These geometries are investigated, both qualitatively and quantitatively, and the turbulence intensity threshold for horizontal axis wind turbines is considered. The most adequate shapes for wind energy exploitation are identified, studying vertical profiles of velocity, turbulent kinetic energy and turbulence intensity. Curved shapes are the most interesting building roof shapes from the wind energy exploitation point of view, leading to the highest speed-up and the lowest turbulence intensity.
Resumo:
In this paper, dynamic simulation was used to compare the energy performance of three innovativeHVAC systems: (A) mechanical ventilation with heat recovery (MVHR) and micro heat pump, (B) exhaustventilation with exhaust air-to-water heat pump and ventilation radiators, and (C) exhaust ventilationwith air-to-water heat pump and ventilation radiators, to a reference system: (D) exhaust ventilation withair-to-water heat pump and panel radiators. System A was modelled in MATLAB Simulink and systems Band C in TRNSYS 17. The reference system was modelled in both tools, for comparison between the two.All systems were tested with a model of a renovated single family house for varying U-values, climates,infiltration and ventilation rates.It was found that A was the best system for lower heating demand, while for higher heating demandsystem B would be preferable. System C was better than the reference system, but not as good as A or B.The difference in energy consumption of the reference system was less than 2 kWh/(m2a) betweenSimulink and TRNSYS. This could be explained by the different ways of handling solar gains, but also bythe fact that the TRNSYS systems supplied slightly more than the ideal heating demand.
Resumo:
This document addresses the direct and indirect use of energy in European organic greenhouse horticulture (OGH) with the aim of reviewing available means for making it more environmental friendly and identifying knowledge gaps that should be addressed to attain this aim. The first observation is that there is no common regulation for energy use in OGH, which is not unexpected, since the need for climatisation is not uniformly distributed in the EU (and outside). Accordingly, the EU directive on organic agriculture does not set limitations on the use of energy, but rather promotes the responsible use of energy and of natural resources. The restrictions and rules of most private standards are slightly more stringent. Some standards have specific restrictions on the amount and sources of energy and/or on the seasonal use of energy for heating. Some standards also address processes that may affect (in)direct energy use, such as cultivation methods, mulching, lighting and growing media or substrates. However, most private standards have no or little restrictions or regulations on energy use. Accordingly, it should not surprise that very little quantitative information is available about energy use in OGH. In the present document we have filled the gaps with data with estimates drawn on energy use in conventional greenhouses. With respect to ongoing research, whereas many of the present research results about energy use and saving in conventional greenhouses are relevant (and also applied) in OGH, little research is devoted to address the energy use that is peculiar to OGH, particularly energy use for humidity control. In short, there are still a lot of knowledge gaps to improve quality and to lower energy use in organic greenhouses. The purpose of this document is a summary of present relevant knowledge about energy use and energy saving and of the perspective for improvement. In particular, the goal is to make an overview on the methods and technologies which can be used to reduce the energy use in OGH. We start from the assumption that methods and technologies that are used for reducing direct and indirect energy in conventional greenhouses can also be applied in organic greenhouses. Research on reducing energy use in conventional greenhouses is also more widely available because the area of conventional greenhouse horticulture is much larger than the area of OGH. When implementing these methods and techniques we should take into account the specific characteristics of organic agriculture like soil-based cultivation, use of organic fertilizers and the limited use of crop protection products. This document is organised as follows: first we report the results of a survey about energy use and relevant standards in the countries participating to the COST action (chapter 1); then we review the energy use for climatisation: heating (chapter 2) and humidity (chapter 3). In chapter 4 we review the available design and management means that would either reduce energy use and/or increase energy use efficiency by increasing productivity of OGH. In chapter 5 we present a short summary of existing information on indirect energy use, that is the energy required to manufacture production means (greenhouse structure and cover, fertilisers, equipment etc.) and for crop protection, particularly steaming, and briefly discuss possible savings. Finally (chapter 6) we review briefly the potential for application of renewable energy sources in OGH.