758 resultados para Taira, Teemu
Resumo:
In a previous examination using natural all-RNA substrates that contained either a 5′-oxy or 5′-thio leaving group at the cleavage site, we demonstrated that (i) the attack by the 2′-oxygen at C17 on the phosphorus atom is the rate-limiting step only for the substrate that contains a 5′-thio group (R11S) and (ii) the departure of the 5′ leaving group is the rate-limiting step for the natural all-RNA substrate (R11O) in both nonenzymatic and hammerhead ribozyme-catalyzed reactions; the energy diagrams for these reactions were provided in our previous publication. In this report we found that the rate of cleavage of R11O by a hammerhead ribozyme was enhanced 14-fold when Mg2+ ions were replaced by Mn2+ ions, whereas the rate of cleavage of R11S was enhanced only 2.2-fold when Mg2+ ions were replaced by Mn2+ ions. This result appears to be exactly the opposite of that predicted from the direct coordination of the metal ion with the leaving 5′-oxygen, because a switch in metal ion specificity was not observed with the 5′-thio substrate. However, our quantitative analyses based on the previously provided energy diagram indicate that this result is in accord with the double-metal-ion mechanism of catalysis.
Resumo:
It has been demonstrated that shortened forms of (stem II-deleted) hammerhead ribozymes with low intrinsic activity form very active dimers with a common stem II (very active short ribozymes capable of forming dimers were designated maxizymes). Intracellular activities of heterodimeric maxizymes and conventional ribozymes, under the control of a human tRNAVal-promoter, were compared against the cleavage of HIV-1 tat mRNA. The pol III-driven maxizymes formed very active heterodimers, and they successfully cleaved HIV-1 tat mRNA in mammalian cells at two sites simultaneously. The cleaved fragments were identified directly by Northern blotting analysis. Despite the initial concerns that a complicated dimerization process and formation of inactive homodimers were involved in addition to the process of association with the target, the overall intracellular activities of tRNAVal-driven maxizymes were significantly higher in mammalian cells than those of two sets of independent, conventional hammerhead ribozymes that were targeted at the same two sites within HIV-1 tat mRNA. Because the tRNAVal-driven maxizymes tested to date have been more effective than tRNAVal-driven “standard” hammerhead ribozymes, the tRNAVal-driven heterodimeric maxizymes appear to have potential utility as gene-inactivating agents.