927 resultados para THERMAL EFFECTS
Resumo:
It is known that the Amundsenisen Icefield in Southern Spitzbergen (Svalbard achipelago) is temperate with an upper layer of snow and firn. It is an accumulation area and, though ice/water mass balance is clearly subject to time evolution, observation data on the long-term elevation changes over the past 40 years (Nuth et al., 2010) allow to assume constant icefield surface. Within our study of the plausibility of a subglacial lake (Glowacki et al., 2007), here, we focus on the sensitivity of the system to the thermal effect of the firn and snow layers.
Resumo:
Best estimate analysis of rod ejection transients requires 3D kinetics core simulators. If they use cross sections libraries compiled in multidimensional tables,interpolation errors – originated when the core simulator computes the cross sections from the table values – are a source of uncertainty in k-effective calculations that should be accounted for. Those errors depend on the grid covering the domain of state variables and can be easily reduced, in contrast with other sources of uncertainties such as the ones due to nuclear data, by choosing an optimized grid distribution. The present paper assesses the impact of the grid structure on a PWR rod ejection transient analysis using the coupled neutron-kinetics/thermal-hydraulicsCOBAYA3/COBRA-TF system. Forthispurpose, the OECD/NEA PWR MOX/UO2 core transient benchmark has been chosen, as material compositions and geometries are available, allowing the use of lattice codes to generate libraries with different grid structures. Since a complete nodal cross-section library is also provided as part of the benchmark specifications, the effects of the library generation on transient behavior are also analyzed.Results showed large discrepancies when using the benchmark library and own-generated libraries when compared with benchmark participants’ solutions. The origin of the discrepancies was found to lie in the nodal cross sections provided in the benchmark.
Resumo:
Laser shock processing (LSP) is increasingly applied as an effective technology for the improvement of metallic materials mechanical properties in different types of components as a means of enhancement of their fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses fields into metallic components allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view)are presented in this paper. Concretely, experimental results on the residual stress profiles and associated mechanical properties modification successfully reached in typical materials under different LSP irradiation conditions are presented. In this case, the specific behavior of a widely used material in high reliability components (especially in nuclear and biomedical applications) as AISI 316L is analyzed, the effect of possible “in-service” thermal conditions on the relaxation of the LSP effects being specifically characterized.
Resumo:
This paper addresses the determination of the realized thermal niche and the effects of climate change on the range distribution of two brown trout populations inhabiting two streams in the Duero River basin (Iberian Peninsula) at the edge of the natural distribution area of this species. For reaching these goals, new methodological developments were applied to improve reliability of forecasts. Water temperature data were collected using 11 thermographs located along the altitudinal gradient, and they were used to model the relationship between stream temperature and air temperature along the river continuum. Trout abundance was studied using electrofishing at 37 sites to determine the current distribution. The RCP4.5 and RCP8.5 change scenarios adopted by the International Panel of Climate Change for its Fifth Assessment Report were used for simulations and local downscaling in this study. We found more reliable results using the daily mean stream temperature than maximum daily temperature and their respective seven days moving-average to determine the distribution thresholds. Thereby, the observed limits of the summer distribution of brown trout were linked to thresholds between 18.1ºC and 18.7ºC. These temperatures characterise a realised thermal niche narrower than the physiological thermal range. In the most unfavourable climate change scenario, the thermal habitat loss of brown trout increased to 38% (Cega stream) and 11% (Pirón stream) in the upstream direction at the end of the century; however, at the Cega stream, the range reduction could reach 56% due to the effect of a ?warm-window? opening in the piedmont reach.
Resumo:
Biochar is a carbon-rich solid obtained by the thermal decomposition of organic matter under a limited supply of oxygen and at relatively low temperatures. Biochar can be prepared from the pyrolysis of different organic feed- stocks, such as wood and biomass crops, agricultural by-products, different types of waste or paper industry waste materials . The pyrolysis procedure of waste, i.e. sewage sludge, has mainly two advantages, firstly, it removes pathogens from waste and, secondly, biochar can reduce the leaching of heavy metals present in raw sewage sludge. This trend of the use of waste material as feedstocks to the preparation of biochar is increasing in the last years due to industrial development and economic growth imply an increase in waste generation. The application of biochar may have positive effects on soil physical properties as water holding capacity and structure or on soil biological activity and soil quality. Also, biochar can be used to remove water pollutants and can be used in multiple ways in soil remediation due to its adsorption of pesticides or metals. Also, biochar contribute to carbon sequestration due to carbon stability of biochar materials. The objective of this presentation is to review the positive effects of the biochar prepared from organic waste on soil properties.
Resumo:
Parabolic reflectors, also known as parabolic troughs, are widely used in solar thermal power plants. This kind of power plants is usually located on desert climates, where the combined action of wind and dust can be of paramount importance. In some cases it becomes necessary to protect these devices from the joined wind and sand action, which is normally accomplished through solid windbreaks. In this paper the results of a wind tunnel test campaign, of a scale parabolic trough row having different windward windbreaks, are reported. The windbreaks herein considered consist of a solid wall with an upper porous fence. Different geometrical configurations, varying the solid wall height and the separation between the parabolic trough row and the windbreak have been considered. From the measured time series, both the mean and peak values of the aerodynamic loads were determined. As it would be expected, mean aerodynamic drag, as well as peak values, decrease as the distance between the windbreak and the parabolic increases, and after a threshold value, such drag loads increase with the distance.
Resumo:
High performance thermal insulating composite materials can be produced with mineral binders and hydrophobic aerogel particles through a hydrophilization process for the latter with surfactants. The present study is focused on the development of aerogel/calcium sulfate composites by the hydrophilization of hydrophobic silica aerogel particles through a polymer-based surfactant. Its effects on the microstructure and hydration degree are examined as well as their relation to the resulting mechanical and physical properties. Results show that composites with an around 60 % of aerogel by volume can achieve a thermal conductivity <30 mW/m × K. Interestingly, a surfactant addition of 0.1 % by wt% of the water in the mixtures provides better material properties compared to a surfactant wt% addition of 5 %. However, it has been found around 40 % entrained air, affecting the material properties by reducing the binder and aerogel volume fractions within the composites. Moreover, gypsum crystallization starts to be inhibited at aerogel volume fractions >35 %. Towards material optimization, a model for the calculation of thermal conductivity of composites and an equation for the compressive strength are proposed.
Resumo:
Biopolymers, such as poly(lactic acid) (PLA), have been proposed as environmentally-friendly alternatives in applications such as food packaging. In this work, silver nanoparticles and thymol were used as active additives in PLA matrices, combining the antibacterial activity of silver with the antioxidant performance of thymol. The combined action of both additives influenced PLA thermal degradation in ternary systems. DSC results showed that the addition of thymol resulted in a clear decrease of the glass transition temperature (Tg) of PLA, suggesting its plasticizing effect in PLA matrices. Slight modifications in mechanical properties of dog-bone bars were also observed after the addition of the active components, especially in the elastic modulus. FESEM analyses showed the good distribution of active additives through the PLA matrix, obtaining homogenous surfaces and highlighting the presence of silver nanoparticles successfully embedded into the bulk matrix. Degradation of these PLA-based nanocomposites with thymol and silver nanoparticles in composting conditions indicated that the inherent biodegradable character of this biopolymer was improved after this modification. The obtained nanocomposites showed suitable properties to be used as biodegradable active-food packaging systems with antioxidant and antimicrobial effects.
Resumo:
The effects of dielectric barrier discharge plasma treatment on zein film containing thymol as an active ingredient were evaluated. The plasma discharge was optically characterized to identify the reactive species. A significant increase in the film roughness (p < 0.05) was observed due to the etching effect of DBD plasma, which was correlated with the increase in the diffusion rate of thymol in the food simulant. The diffusion of thymol from the zein film was measured in aqueous solution. The kinetics of thymol release followed the Fick’s law of diffusion as shown by the high correlation coefficients between experimental and theoretical data. No significant change (p > 0.05) was observed for the thermal properties of the antimicrobial films after DBD plasma treatment.
Resumo:
Remaining silicon in SiC-based materials produced via reactive infiltration limits their use in high-temperature applications due to the poor mechanical properties of silicon: low fracture toughness, extreme fragility and creep phenomena above 1000 °C. In this paper SiC–FeSi2 composites are fabricated by reactive infiltration of Si–Fe alloys into porous Cf/C preforms. The resulting materials are SiC/FeSi2 composites, in which remaining silicon is reduced by formation of FeSi2. For the richest Fe alloys (35 wt% Fe) a nominal residual silicon content below 1% has been observed. However this, the relatively poor mechanical properties (bending strength) measured for those resulting materials can be explained by the thermal mismatch of FeSi2 and SiC, which weakens the interface and does even generate new porosity, associated with a debonding phenomenon between the two phases.
Resumo:
The representation of the thermal behaviour of the building is achieved through a relatively simple dynamic model that takes into account the effects due to the thermal mass of the building components. The model of a intra-floor apartment has been built in the Matlab-Simulink environment and considers the heat transmission through the external envelope, wall and windows, the internal thermal masses, (i.e. furniture, internal wall and floor slabs) and the sun gain due to opaque and see-through surfaces of the external envelope. The simulations results for the entire year have been compared and the model validated, with the one obtained with the dynamic building simulation software Energyplus.
Resumo:
Transgenerational effects can buffer populations against environmental change, yet little is known about underlying mechanisms, their persistence, or the influence of environmental cue timing. We investigated mitochondrial respiratory capacity (MRC) and gene expression of marine sticklebacks that experienced acute or developmental acclimation to simulated ocean warming (21°C) across three generations. Previous work showed that acute acclimation of grandmothers to 21°C led to lower (optimised) offspring MRCs. Here, developmental acclimation of mothers to 21°C led to higher, but more efficient offspring MRCs. Offspring with a 21°Cx17°C grandmother-mother environment mismatch showed metabolic compensation: their MRCs were as low as offspring with a 17°C thermal history across generations. Transcriptional analyses showed primarily maternal but also grandmaternal environment effects: genes involved in metabolism and mitochondrial protein biosynthesis were differentially expressed when mothers developed at 21°C, whereas 21°C grandmothers influenced genes involved in hemostasis and apoptosis. Genes involved in mitochondrial respiration all showed higher expression when mothers developed at 21° and lower expression in the 21°Cx17°C group, matching the phenotypic pattern for MRCs. Our study links transcriptomics to physiology under climate change, and demonstrates that mechanisms underlying transgenerational effects persist across multiple generations with specific outcomes depending on acclimation type and environmental mismatch between generations.
Resumo:
Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bølling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A.
Resumo:
The scaling of decoherence rates with qubit number N is studied for a simple model of a quantum computer in the situation where N is large. The two state qubits are localized around well-separated positions via trapping potentials and vibrational centre of mass motion of the qubits occurs. Coherent one and two qubit gating processes are controlled by external classical fields and facilitated by a cavity mode ancilla. Decoherence due to qubit coupling to a bath of spontaneous modes, cavity decay modes and to the vibrational modes is treated. A non-Markovian treatment of the short time behaviour of the fidelity is presented, and expressions for the characteristic decoherence time scales obtained for the case where the qubit/cavity mode ancilla is in a pure state and the baths are in thermal states. Specific results are given for the case where the cavity mode is in the vacuum state and gating processes are absent and the qubits are in (a) the Hadamard state (b) the GHZ state.
Resumo:
The effects of boron and strontium interactions on the eutectic silicon in hypoeutectic Al-Si alloys have been studied. Samples were prepared from an AI-I 0 mass%Si base alloy with different Al-B additions, alone and in combination with strontium. In alloys containing no strontium, boron additions do not cause modification of the eutectic silicon, while in strontium containing alloys, boron additions reduce the level of modification of the eutectic silicon. Thermal analysis parameters and eutectic silicon microstructures were investigated with respect to the Sr to B ratio. In order to modify the eutectic silicon, a Sr/B ratio exceeding 0.4 is required.