903 resultados para Surface plasmon resonance


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, 4-ferrocene thiophenol was employed as a novel capping agent to synthesize electroactive gold nanoparticles. Transmission electron microscopy showed an average core diameter of 2.5 nm. The optical and electrochemical properties of the 4-ferrocene thiophenol capped gold nanoparticles were characterized by UV-Vis spectroscopy and cyclic voltammograms. Surface plasmon absorbance was detected at 522 nm. Cyclic voltammograms revealed the adsorbed layer reaction controlled electrode process, and the formal potential of electroactive ferrocene centers shifted anodically compared with ferrocene in solution, which could be attributed to the electron-withdrawing phenyl moiety linked to ferrocene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gold nanoparticles capped by 4-ferrocene thiophenol with an average core size of 2.5 nm and surface plasmon absorbance at 522 nm were place-exchanged with 1,8-octanedithiol, and then self-assembled onto the gold electrode via tail SH group. The self-assembly was characterized by X-ray photoelectron spectroscopy. Cyclic voltammograms examined the coverage fraction of the self-assembled monolayers of the electroactive gold nanoparticles and the formal potential of the indicated SAMs. Further experiments exhibited that the electrode process was controlled by surface confined faradic reactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerous reports have focused on ferrocene-terminated electroactive self-assembled monolayers (SAMs) on a flat An surface but only a few on ferrocene SAMs on An colloid. In this paper, we employ 4-ferrocene thiophenol as a novel capping agent to produce electroactive gold nanoparticles in consideration of the peculiar pi-conjugated structure. Transmission electron microscopy shows the narrow-dispersed gold core with an average core diameter of ca. 2.5 nm. UV/vis spectra examine the pi-conjugated structure of 4-ferrocene thiophenol and surface plasmon absorbance of the indicated gold nanoparticles. X-ray photoelectron spectroscopy reveals electronic properties of the An core and thiol ligands. Electrochemical measurement shows that the oxidation peak current is proportional to the scan rate, indicating the electrode process is controlled by adsorbed layer reaction. The formal potential of the Fc-MPCs is compared with that of free ferrocene in MeCN solution and the Fc-SAMs. The shifts are attributed to the phenyl moiety in the 4-ferrocene thiophenol and dielectric constant of the solvation environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis investigates the application of plasmonic gold nanostructures for mercury detection. Various gold and silver single nanostructures and gold nanostructure assemblies were characterised in detail by correlated single nanostructure spectroscopy and electron microscopy. Several routes for mercury detection were explored: plasmon resonance energy transfer (PRET) upon Hg2+ binding to immobilised gold nanoparticle-organic ligand hybrid structures and amalgamation of single immobilised gold nanorods upon chemical and upon electrochemical reduction of Hg2+ ions. The amalgamation approach showed large potential with extraordinary shifts of the nanorods’ scattering spectra upon exposure to reduced mercury; a result of compositional and morphological change induced in the nanorod by amalgamation with mercury. A shift of 5 nm could be recorded for a concentration as low 10 nM Hg2+. Through detailed time-dependent experiments insights into the amalgamation mechanism were gained and a model comprising 5 steps was developed. Finally, spectroelectrochemistry proved to be an excellent way to study in real time in-situ the amalgamation of mercury with gold nanorods paving the way for future work in this field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The radiative processes associated with fluorophores and other radiating systems can be profoundly modified by their interaction with nanoplasmonic structures. Extreme electromagnetic environments can be created in plasmonic nanostructures or nanocavities, such as within the nanoscale gap region between two plasmonic nanoparticles, where the illuminating optical fields and the density of radiating modes are dramatically enhanced relative to vacuum. Unraveling the various mechanisms present in such coupled systems, and their impact on spontaneous emission and other radiative phenomena, however, requires a suitably reliable and precise means of tuning the plasmon resonance of the nanostructure while simultaneously preserving the electromagnetic characteristics of the enhancement region. Here, we achieve this control using a plasmonic platform consisting of colloidally synthesized nanocubes electromagnetically coupled to a metallic film. Each nanocube resembles a nanoscale patch antenna (or nanopatch) whose plasmon resonance can be changed independent of its local field enhancement. By varying the size of the nanopatch, we tune the plasmonic resonance by ∼ 200 nm, encompassing the excitation, absorption, and emission spectra corresponding to Cy5 fluorophores embedded within the gap region between nanopatch and film. By sweeping the plasmon resonance but keeping the field enhancements roughly fixed, we demonstrate fluorescence enhancements exceeding a factor of 30,000 with detector-limited enhancements of the spontaneous emission rate by a factor of 74. The experiments are supported by finite-element simulations that reveal design rules for optimized fluorescence enhancement or large Purcell factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The contribution of electron-phonon scattering and grain boundary scattering to the mid-IR (lambda = 3.392 mum) properties of An has been assessed by examining both bulk, single crystal samples-Au(1 1 1) and Au(1 1 0)-and thin film, polycrystalline An samples at 300 K and 100 K by means of surface plasmon polariton excitation. The investigation constitutes a stringent test for the in-vacuo Otto-configuration prism coupler used to perform the measurements, illustrating its strengths and limitations. Analysis of the optical response is guided by a physically based interpretation of the Drude model. Relative to the reference case of single crystal Au at 100 K (epsilon = - 568 + i17.5), raising the temperature to 300 K causes increased electron-phonon scattering that accounts for a reduction of similar to40 nm in the electron mean free path. Comparison of a polycrystalline sample to the reference case determines a mean free path due to grain boundary scattering of similar to 17 nm, corresponding to about half the mean grain size as determined from atomic force microscopy and indicating a high reflectance coefficient for the An grain boundaries. An analysis combining consideration of grain boundary scattering and the inclusion of a small percentage of voids in the polycrystalline film by means of an effective medium model indicates a value for the grain boundary reflection coefficient in the range 0.55-0.71. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electro-optic response of a cell consisting of a thin layer of liquid crystal deposited onto gold nanorods embedded in thin film alumina with a transparent top electrode has been investigated. For p-polarized light incident from the liquid crystal side, the extinction peak associated with the nanorod longitudinal plasmon resonance is completely suppressed. The peak could be recovered by applying an external electric field parallel to the long axis of the nanorods. No extinction peak suppression is observed when the light was incident from the nanorod side of the cell. The effect is explained by polarization properties of liquid crystal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aggregated Au colloids have been widely used as SERS enhancing media for many years but to date there has been no systematic investigation of the effect of the particle size on the enhancements given by simple aggregated Au colloid solutions. Previous systematic studies on isolated particles in solution or multiple particles deposited onto surfaces reported widely different optimum particle sizes for the same excitation wavelength and also disagreed on the extent to which surface plasmon absorption spectra were a good predictor of enhancement factors. In this work the spectroscopic properties of a range of samples of monodisperse Au colloids with diameters ranging from 21 to 146 nm have been investigated in solution. The UV/visible absorption spectra of the colloids show complex changes as a function of aggregating salt (MgSO4) concentration which diminish when the colloid is fully aggregated. Under these conditions, the relative SERS enhancements provided by the variously sized colloids vary very significantly across the size range. The largest signals in the raw data are observed for 46 nm colloids but correction for the total surface area available to generate enhancement shows that particles with 74 nm diameter give the largest enhancement per unit surface area. The observed enhancements do not correlate with absorbance at the excitation wavelength but the large differences between differently sized colloids demonstrate that even in the randomly aggregated particle assemblies studied here, inhomogeneous broadening does not mask the underlying changes due to differences in particle diameter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mid-infrared optical response of c-axis thin films of YBa2Cu3O7-delta has been studied using Otto-configuration attenuated total reflectance. The measured reflectance-angle characteristics are dominated by a strong absorption feature due to the excitation of surface plasmons, and can be modeled to determine the a-b plane dielectric function. The results show that while epsilon(i,) and therefore sigma(r), are temperature independent, \epsilon(r)\ exhibits a moderate decrease with generalized Drude analysis shows that the plasma frequency is independent of temperature, but decreases with decreasing doping. The scattering rate increases with temperature, and also increases with decreasing doping, consistent with stronger coupling in the underdoped regime. The mass-enhancement is small but increases to 30-40% at delta = 0.6. Difficulties in reconciling the results with some current theories of high-T-c materials are discussed. Finally, the surface plasmon propagation lengths and penetration depths are shown to vary systematically with doping. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Results are reported on the a-b plane dielectric function (epsilon) of thin-film c-axis NdBa2Cu3O7-delta with close to optimal oxygen doping (T-c similar to 90 K) in the mid-infrared (wavelength 3.392 mum) over the temperature range 85 K to 300 K. An attenuated total reflectance technique based on the excitation of surface plasmon polaritons is used. The results show that \epsilon (r)\ decreases quasi-linearly with increasing temperature, while Ei is invariant with temperature to within experimental uncertainties. Representative values are epsilon = [epsilon (r) + i epsilon (i)] = (-12.9 +/- 0.6) + i(23.0 +/- 1.5) at T similar to 295 K and epsilon = (-15.7 +/- 0.7) + i(23.5 +/- 1.1) at T similar to 90 K. The raw data an interpreted in terms of the generalized Drude model which gives effective scattering rates (1/tau*) that increase with temperature from about 3800 cm(-1) at 90 K to about 4300 cm(-1) at 295 K. There are indications of a superlinear T-dependence in the scattering, 1/tau*: a fit to a function of the form 1/tau* = A + BTalpha gives alpha = 2.8 +/- 0.7. The effective plasma frequency, omega (p)*, with an average value of approximately 21 000 cm(-1) was independent of temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The construction and operation of a prism/variable-gap/sample system (or variable-gap Otto coupler) for the excitation of surface electromagnetic modes is reported. This system has been used for the observation and characterization of surface plasmon polaritons on thin film structures. The initial alignment of prism and sample is performed under gravity and the subsequent gap variation is performed by means of a single actuator operating a flexure stage on which the prism is mounted. The flexure stage ensures the maintenance of good parallelism between sample and prism as the gap dimension is varied. The coupler has also served as a prototype, in terms of design principle, for the construction of a more sophisticated, variable-gap Otto coupler that can operate in vacuum at temperatures from ambient to 85 K. (C) 2000 American Institute of Physics. [S0034-6748(00)02311-X].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Label-free plasmonic biosensors rely either on surface plasmon polaritons or on localized surface plasmons on continuous or nanostructured noble-metal surfaces to detect molecular-binding events(1-4). Despite undisputed advantages, including spectral tunability(3), strong enhancement of the local electric field(5,6) and much better adaptability to modern nanobiotechnology architectures(7), localized plasmons demonstrate orders of magnitude lower sensitivity compared with their guided counterparts(3). Here, we demonstrate an improvement in biosensing technology using a plasmonic metamaterial that is capable of supporting a guided mode in a porous nanorod layer. Benefiting from a substantial overlap between the probing field and the active biological substance incorporated between the nanorods and a strong plasmon-mediated energy confinement inside the layer, this metamaterial provides an enhanced sensitivity to refractive-index variations of the medium between the rods (more than 30,000nm per refractive-index unit). We demonstrate the feasibility of our approach using a standard streptavidin-biotin affinity model and record considerable improvement in the detection limit of small analytes compared with conventional label-free plasmonic devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silver nanorods have been grown by electrodeposition into thin film porous alumina templates (AAO). Optical transmission measurements using p-polarized incident white light shows clear plasmon resonance extinction peaks. We successfully model the dependence on angle in incidence of extinction peak height and position using a multiple-multipoles (MMP) approach with the different spectral features being clearly associated with the effective electric field distribution and coupling between individual nanorods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Otto configuration attenuated total reflection (ATR) measurements of the excitation of surface plasmons in the infrared have been carried out on YBCO films deposited on MgO (100) substrates. The dielectric constants for YBCO at 3.392 mu m are determined to be -10 + 15i for c-axis material. The anisotropic nature of the cuprate is seen from films with other orientations: nearly a-axis material has constants of 4.0 + 7.0i. It is thus not metallic in its optical response along the c-axis which lies parallel to the substrate plane. Ellipsometric measurements in the visible on c-axis material point to a maximum surface plasmon energy of 1 eV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A prototype fluorescent based biosensor has been developed for the antibody based detection of food related contaminants. Its performance was characterised and showed a typical antibody binding signal of 200-2000 mV, a short term noise of 9.1 mV, and baseline slope of -0.016 mV/s over 4 h. Bulk signal detection repeatability (n=23) and reproducibility (n=3) were less than 2.4%CV. The biosensor detection unit was evaluated using two food related model systems proving its ability to monitor both binding using commercial products and inhibition through the development of an assay. This assay development potential was evaluated by observing the biosensor's performance whilst appraising several labelled antibody and glass slide configurations. The molecular interaction between biotin and an anti-biotin antibody was shown to be inhibited by 41% due to the presence of biotin in a sample. A food toxin (domoic acid) calibration curve was produced, with %CVs ranging from 2.7 to 7.8%, and a midpoint of approximately 17 ng/ml with further optimisation possible. The ultimate aim of this study was to demonstrate the working principles of this innovative biosensor as a potential portable tool with the opportunity of interchangeable assays. The biosensor design is applicable for the requirements of routine food contaminant analysis, with respect to performance, functionality and cost. (C) 2012 Elsevier B.V. All rights reserved.