928 resultados para Suppressor of cytokine signaling proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is limited information on the role of penicillin-binding proteins (PBPs) in the resistance of Acinetobacter baumannii to β-lactams. This study presents an analysis of the allelic variations of PBP genes in A. baumannii isolates. Twenty-six A. baumannii clinical isolates (susceptible or resistant to carbapenems) from three teaching hospitals in Spain were included. The antimicrobial susceptibility profile, clonal pattern, and genomic species identification were also evaluated. Based on the six complete genomes of A. baumannii, the PBP genes were identified, and primers were designed for each gene. The nucleotide sequences of the genes identified that encode PBPs and the corresponding amino acid sequences were compared with those of ATCC 17978. Seven PBP genes and one monofunctional transglycosylase (MGT) gene were identified in the six genomes, encoding (i) four high-molecular-mass proteins (two of class A, PBP1a [ponA] and PBP1b [mrcB], and two of class B, PBP2 [pbpA or mrdA] and PBP3 [ftsI]), (ii) three low-molecular-mass proteins (two of type 5, PBP5/6 [dacC] and PBP6b [dacD], and one of type 7 (PBP7/8 [pbpG]), and (iii) a monofunctional enzyme (MtgA [mtgA]). Hot spot mutation regions were observed, although most of the allelic changes found translated into silent mutations. The amino acid consensus sequences corresponding to the PBP genes in the genomes and the clinical isolates were highly conserved. The changes found in amino acid sequences were associated with concrete clonal patterns but were not directly related to susceptibility or resistance to β-lactams. An insertion sequence disrupting the gene encoding PBP6b was identified in an endemic carbapenem-resistant clone in one of the participant hospitals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the postnatal development of cat visual cortex and corpus callosum the molecular composition of tau proteins varied with age. In both structures, they changed between postnatal days 19 and 39 from a set of two juvenile forms to a set of at least two adult variants with higher molecular weights. During the first postnatal week, tau proteins were detectable with TAU-1 antibody in axons of corpus callosum and visual cortex, and in some perikarya and dendrites in the visual cortex. At later ages, tau proteins were located exclusively within axons in all cortical layers and in the corpus callosum. Dephosphorylation of postnatal day 11 cortical tissue by alkaline phosphatase strongly increased tau protein immunoreactivity on Western blots and in numerous perikarya and dendrites in all cortical layers, in sections, suggesting that some tau forms had been unmasked. During postnatal development the intensity of this phosphate-dependent somatodendritic staining decreased, but remained in a few neurons in cortical layers II and III. On blots, the immunoreactivity of adult tau to TAU-1 was only marginally increased by dephosphorylation. Other tau antibodies (TAU-2, B19 and BR133) recognized two juvenile and two adult cat tau proteins on blots, and localized tau in axons or perikarya and dendrites in tissue untreated with alkaline phosphatase. Tau proteins in mature tissue were soluble and not associated with detergent-resistant structures. Furthermore, dephosphorylation by alkaline phosphatase resulted in the appearance of more tau proteins in soluble fractions. Therefore tau proteins seem to alter their degree of phosphorylation during development. This could affect microtubule stability as well as influence axonal and dendritic differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : Breast cancer incidence rates have increased over the past hundred years, in particular, in Western industrial countries and they continue to rise worldwide. Breast cancer risk has been linked to life exposure to endogenous and exogenous estrogens, and there is increasing concern that exposure to endocrine disruptors which are increasingly accumulating in our environment may also have a role. Using the mouse as model, I have analyzed the physiological role of estrogen signaling in mammary gland development. I have shown that estrogen signaling through the estrogen receptor alpha (ERα) in the mammary epithelium is required for ductal morphogenesis during puberty. Moreover, I have demonstrated that estrogens induce proliferation of mammary epithelial cells through a paracrine mechanism. The presence of estrogen signaling is essential cell intrinsically via ERα or ERβ for the terminal differentiation into milk secreting cells during pregnancy. Furthermore, I have examined how perinatal exposure to the estrogenic plasticizer bisphenol A (BPA) found ubiquitously in consumer goods such as baby bottles formula and beverage containers affects the normal mammary gland development and possibly predispose the mammary gland to tumorigenesis. I have found that C57b16 mice that were exposed, via their drinking water, to several BPA doses ranging from 0.025µg/kg/day to 250µg/kg/day exhibits delayed terminal end bud formation and consequently the ductal outgrowth. Later in life, the mice that were exposed in utero to BPA displayed an increased number of mammary epithelial cells. Acute exposure of 3-week-old mice to BPA can alter gene expression levels of an important estrogen target gene, amphiregulin. Taken together these data are compatible with a scenario in which perinatal BPA exposure may alter mammary gland development by affecting developmental signaling pathways. Résumé : Les taux d'incidence des cancers du sein ont augmenté au cours des cent dernières années en particulier dans les pays industriels occidentaux et ils continuent d'augmenter dans le monde entier. Le risque du cancer du sein a été corrélé à l'exposition au cours de la vie aux oestrogènes endogènes et exogènes. Il y a une préoccupation croissante concernant l'exposition aux perturbateurs endocriniens qui ne cessent de s'accumulent dans notre environnement et qui peuvent également avoir un rôle dans l'augmentation des cancers du sein. En utilisant le modèle de souris, j'ai analysé le rôle physiologique de la voie de signalisation à l'oestrogène dans le développement mammaire. J'ai prouvé que l'oestrogène par l'intermédiaire de son récepteur alpha (ERα) est indispensable dans l'épithélium pour la morphogénèse du système canalaire pendant la puberté. De plus, j'ai démontré que les oestrogènes induisent la prolifération des cellules épithéliales mammaires par un mécanisme paracrine. La présence de la voie de signalisation à l'oestrogène est essentielle de manière intrinsèque à la cellule par l'intermédiaire d'ERα ou ERβ pour la différentiation terminale des cellules épithéliales en cellules sécrétrices de lait pendant la grossesse. En outre, j'ai examiné comment l'exposition périnatale au bisphénol A (BPA), un plastifiant présentant des propriétés ostrogéniques et omniprésent dans divers produits d'usage courant tels que les biberons des bébés et les récipients en plastique, affecte le développement de la glande mammaire et prédispose probablement celle-ci à la tumorigénèse. J'ai constaté que l'exposition périnatale à BPA retarde la formation des bourgeons terminaux et par conséquent la croissance du système canalaire. Plus tard dans la vie, les souris qui ont été exposées dans l'utérus au BPA ont montré un plus grand nombre de cellules épithéliales mammaires. L'exposition aiguë de souris âgées de 3 semaines au BPA perturbe le niveau d'expression d'un gène cible important de l'oestrogène, l'amphiregulin. Ces données sont compatibles avec un scénario dans lequel l'exposition périnatale au BPA peut changer le développement de la glande mammaire en affectant des voies de signalisation développementales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen-specific T-cell activation implicates a redistribution of plasma membrane-bound molecules in lipid rafts, such as the coreceptors CD8 and CD4, the Src kinases Lek and Fyn, and the linker for activation of T cells (LAT), that results in the formation of signaling complexes. These molecules partition in lipid rafts because of palmitoylation of cytoplasmic, membrane proximal cysteines, which is essential for their functional integrity in T-cell activation. Here, we show that exogenous dipalmitoyl-phosphatidylethanolamine (DPPE), but not the related unsaturated dioleoyl-phosphatidylethanolamine (DOPE), partitions in lipid rafts. DPPE inhibits activation of CD8(+) T lymphocytes by sensitized syngeneic antigen-presenting cells or specific major histocompatibility complex (MHC) peptide tetramers, as indicated by esterase release and intracellular calcium mobilization. Cytotoxic, T lymphocyte (CTL)-target cell conjugate formation is not affected by DPPE, indicating that engagement of the T-cell receptor by its cognate ligand is intact in lipid-treated cells. In contrast to other agents known to block raft-dependent signaling, DPPE efficiently inhibits the MHC peptide-induced recruitment of palmitoylated signaling molecules to lipid rafts and CTL activation without affecting cell viability or lipid raft integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin A is necessary for normal embryonic development, but its role in the adult brain is poorly understood. Vitamin A derivatives, retinoids, are involved in a complex signaling pathway that regulates gene expression and, in the central nervous system, controls neuronal differentiation and neural tube patterning. Although a major functional implication of retinoic signaling has been repeatedly suggested in synaptic plasticity, learning and memory, sleep, schizophrenia, depression, Parkinson disease, and Alzheimer disease, the targets and the underlying mechanisms in the adult brain remain elusive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (.100) and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protein topology database KnotProt, http://knotprot.cent.uw.edu.pl/, collects information about protein structures with open polypeptide chains forming knots or slipknots. The knotting complexity of the cataloged proteins is presented in the form of a matrix diagram that shows users the knot type of the entire polypeptide chain and of each of its subchains. The pattern visible in the matrix gives the knotting fingerprint of a given protein and permits users to determine, for example, the minimal length of the knotted regions (knot's core size) or the depth of a knot, i.e. how many amino acids can be removed from either end of the cataloged protein structure before converting it from a knot to a different type of knot. In addition, the database presents extensive information about the biological functions, families and fold types of proteins with non-trivial knotting. As an additional feature, the KnotProt database enables users to submit protein or polymer chains and generate their knotting fingerprints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to stress or injury the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy and fibrosis. Transformation of cardiac fibroblasts to myofibroblasts is a crucial event initiating the fibrotic process. Cardiac myofibroblasts invade the myocardium and secrete excess amounts of extracellular matrix proteins, which cause myocardial stiffening, cardiac dysfunctions and progression to heart failure. While several studies indicate that the small GTPase RhoA can promote profibrotic responses, the exchange factors that modulate its activity in cardiac fibroblasts are yet to be identified. In the present study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor (GEF) activity, is critical for activating RhoA and transducing profibrotic signals downstream of type I angiotensin II receptors (AT1Rs) in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly reduces the ability of angiotensin II to promote RhoA activation, differentiation of cardiac fibroblasts to myofibroblasts, collagen deposition as well as myofibroblast migration. Interestingly, AT1Rs promote AKAP-Lbc activation via a pathway that requires the α subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as a key Rho-guanine nucleotide exchange factor modulating profibrotic responses in cardiac fibroblasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipid mediators can trigger physiological responses by activating nuclear hormone receptors, such as the peroxisome proliferator-activated receptors (PPARs). PPARs, in turn, control the expression of networks of genes encoding proteins involved in all aspects of lipid metabolism. In addition, PPARs are tumor growth modifiers, via the regulation of cancer cell apoptosis, proliferation, and differentiation, and through their action on the tumor cell environment, namely, angiogenesis, inflammation, and immune cell functions. Epidemiological studies have established that tumor progression may be exacerbated by chronic inflammation. Here, we describe the production of the lipids that act as activators of PPARs, and we review the roles of these receptors in inflammation and cancer. Finally, we consider emerging strategies for therapeutic intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to chronic stress the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy, increased cellular apoptosis and fibrosis, which ultimately causes cardiac dysfunction and heart failure. Increasing evidence suggest the role of scaffolding and anchoring proteins in coordinating different signaling pathways that mediate the hypertrophic response of the heart. In this context, the family of Α-kinase anchoring proteins (AKAPs) emerged as important regulators of the cardiac function. During my thesis work I have conducted two independent projects, both of them aiming at elucidating the role of AKAPs in the heart. It has been shown that AKAP-Lbc, an anchoring protein that possesses an intrinsic Rho- specific exchange factor activity, organizes a signaling complex that links AKAP-Lbc- dependent activation of RhoA with the mitogen activated protein kinase (MAPK) p38. The first aim of my thesis was to study the role of this novel transduction pathway in the context of cardiac hypertrophy. Here we show that transgenic mice overexpressing in cardiomyocytes a competitor fragment of AKAP-Lbc, which specifically disrupts endogenous AKAP-Lbc / p38 complexes, developed early dilated cardiomyopathy in response to two weeks of transverse aortic constriction (TAC) as compared to controls. Interestingly, inhibition of the AKAP-Lbc / p38 transduction pathway significantly reduced the hypertrophic growth of single cardiomyocytes induced by pressure overload. Therefore, it appears that the AKAP- Lbc / p38 complex is crucially involved in the regulation of stress-induced cardiomyocyte hypertrophy and that disruption of this signaling pathway is detrimental for the heart under conditions of sustained hemodynamic stress. Secondly, in order to identify new AKAPs involved in the regulation of cardiac function, we followed a proteomic approach which allowed us to characterize AKAP2 as a major AKAP in the heart. Importantly, here we show that AKAP2 interacts with several proteins known to be involved in the control of gene transcription, such as the nuclear receptor coactivator 3 (NCoA3) or the ATP-dependent SWI/SNF chromatin remodeling complex. Thus, we propose AKAP2 as a novel mediator of cardiac gene expression through its interaction with these transcriptional regulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcineurin is the only known serine-threonine phosphatase under calcium-calmodulin control and key regulator of the immune system. Treatment of patients with calcineurin-inhibitory drugs like cyclosporin A and FK506 to prevent graft rejection dramatically increases the risk of cutaneous squamous cell carcinoma, which is a major cause of death after organ transplants. Recent evidence indicates that suppression of calcineurin signaling, together with its impact on the immune system, exerts direct tumor-promoting effects in keratinocytes, enhancing cancer stem cell potential. The underlying mechanism involves interruption of a double negative regulatory axis, whereby calcineurin and nuclear factors of activated T-cell signaling inhibits expression of ATF3, a negative regulator of p53. The resulting suppression of keratinocyte cancer cell senescence is of likely clinical significance for the many patients under treatment with calcineurin inhibitors and may be of relevance for other cancer types in which altered calcium-calcineurin signaling plays a role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All higher plants possess multiple phytochrome photoreceptors, with phytochrome A (phyA) being light labile and other members of the family being relatively light stable (phyB-phyE in Arabidopsis [Arabidopsis thaliana]). phyA also differs from other members of the family because it enables plants to deetiolate in far-red light-rich environments typical of dense vegetational cover. Later in development, phyA counteracts the shade avoidance syndrome. Light-induced degradation of phyA favors the establishment of a robust shade avoidance syndrome and was proposed to be important for phyA-mediated deetiolation in far-red light. phyA is ubiquitylated and targeted for proteasome-mediated degradation in response to light. Cullin1 and the ubiquitin E3 ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) have been implicated in this process. Here, we systematically analyze the requirement of cullins in this process and show that only CULLIN1 plays an important role in light-induced phyA degradation. In addition, the role of COP1 in this process is conditional and depends on the presence of metabolizable sugar in the growth medium. COP1 acts with SUPPRESSOR OF PHYTOCHROME A (SPA) proteins. Unexpectedly, the light-induced decline of phyA levels is reduced in spa mutants irrespective of the growth medium, suggesting a COP1-independent role for SPA proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibrio vulnificus and Vibrio cholerae are Gram-negative pathogens that cause serious infectious disease in humans. The beta form of pro-IL-1 is thought to be involved in inflammatory responses and disease development during infection with these pathogens, but the mechanism of beta form of pro-IL-1 production remains poorly defined. In this study, we demonstrate that infection of mouse macrophages with two pathogenic Vibrio triggers the activation of caspase-1 via the NLRP3 inflammasome. Activation of the NLRP3 inflammasome was mediated by hemolysins and multifunctional repeat-in-toxins produced by the pathogenic bacteria. NLRP3 activation in response to V. vulnificus infection required NF-kappaB activation, which was mediated via TLR signaling. V. cholerae-induced NLRP3 activation also required NF-kappaB activation but was independent of TLR stimulation. Studies with purified V. cholerae hemolysin revealed that toxin-stimulated NLRP3 activation was induced by TLR and nucleotide-binding oligomerization domain 1/2 ligand-mediated NF-kappaB activation. Our results identify the NLRP3 inflammasome as a sensor of Vibrio infections through the action of bacterial cytotoxins and differential activation of innate signaling pathways acting upstream of NF-kappaB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deletion or substitution of the serine-rich N-terminal stretch of grass phytochrome A (phyA) has repeatedly been shown to yield a hyperactive photoreceptor when expressed under the control of a constitutive promoter in transgenic tobacco or Arabidopsis seedlings retaining their native phyA. These observations have lead to the proposal that the serine-rich region is involved in negative regulation of phyA signaling. To re-evaluate this conclusion in a more physiological context we produced transgenic Arabidopsis seedlings of the phyA-null background expressing Arabidopsis PHYA deleted in the sequence corresponding to amino acids 6-12, under the control of the native PHYA promoter. Compared to the transgenic seedlings expressing wild-type phyA, the seedlings bearing the mutated phyA showed normal responses to pulses of far-red (FR) light and impaired responses to continuous FR light. In yeast two-hybrid experiments, deleted phyA interacted normally with FHY1 and FHL, which are required for phyA accumulation in the nucleus. Immunoblot analysis showed reduced stability of deleted phyA under continuous red or FR light. The reduced physiological activity can therefore be accounted for by the enhanced destruction of the mutated phyA. These findings do not support the involvement of the serine-rich region in negative regulation but they are consistent with a recent report suggesting that phyA turnover is regulated by phosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of the membrane-cytoskeleton linker Ankyrin 2, but possible interconnections and cooperation between these proteins were unknown. Here, we demonstrate that the heterotrimeric G protein Go functions as a transducer of Wingless-Frizzled 2 signaling in the synapse. We identify Ankyrin 2 as a target of Go signaling required for NMJ formation. Moreover, the Go-ankyrin interaction is conserved in the mammalian neurite outgrowth pathway. Without ankyrins, a major switch in the Go-induced neuronal cytoskeleton program is observed, from microtubule-dependent neurite outgrowth to actin-dependent lamellopodial induction. These findings describe a novel mechanism regulating the microtubule cytoskeleton in the nervous system. Our work in Drosophila and mammalian cells suggests that this mechanism might be generally applicable in nervous system development and function.