919 resultados para Strong solutions
Resumo:
A simple method based on laser beam deflection to study the variation of diffusion coefficient with concentration in a solution is presented. When a properly fanned out laser beam is passed through a rectangular cell filled with solution having concentration gradient, the emergent beam traces out a curved pattern on a screen. By taking measurements on the pattern at different concentrations, the variation of diffusion coefficient with concentration can be determined.
Resumo:
Dual beam transient thermal lens studies were carried out in rhodamine 6G methanol solutions using 532 nm pulses from a frequency doubled Nd:YAG laser. Analysis of thermal lens signal shows the existence of different nonlinear processes like two photon absorption and three photon absorption phenomena along with one photon absorption. Concentration of the dye in the solution has been found to influence the occurrence of the different processes in a significant way.
Resumo:
Dept.of Instrumentation,Cochin University of Science and Technology
Resumo:
In light of the various international instruments and international agencies that are actively engaged in resolving the issue of ABS, the present work tries to find an answer to the larger question how far the above agencies have succeeded in regulating access and make sure of benefit sharing. In this process, the work comprehensively analyses the work of different agencies involved in the process. It tries to find out the major obstacles that stand in the way of fulfilment of the benefit sharing objective and proposes the ways and means to tackle them. The study first traces the legal foundations of the concept of property in GRs and associated TK.For this, it starts with analysis of the nature of property and the questions related to ownership in GRs as contained in the CBD as well as in various State legislations. It further examines the notion of property before and after the enactment of the CBD and establishes that the CBD contains strong private property jurisprudence.Based on the theoretical foundation of private property right,Chapter 3 analyses the benefit sharing mechanism of the CBD, i.e. the Nagoya Protocol. It searches for a theoretical convergence of the notion of property as reflected in the two instruments and successfully establishes the same. It makes an appraisal of the Nagoya regime to find out how far it has gone beyond the CBD in ensuring the task of benefit sharing and the impediments in its way.Realizing that the ITPGRFA forms part of the CBD system, Chapter 4 analyses the benefit sharing structure of ITPGRFA as revealed through its multilateral system. This gives the work the benefit of comparing two different benefit sharing models operating on the same philosophy of property. This chapter tries to find out whether there is conceptual coherence in the notion of property when the benefit sharing model changes. It alsocompares the merits and demerits of both the systems and tries to locate the hurdles in achieving benefit sharing. Aware of the legal impediments caused by IPRs in the process of ABS, Chapter 5 tries to explore the linkages between IPRs and GRs and associated TK and assesses why contract-based CBD system fails before the monopoly rights under TRIPS. Chapter 6 analyses the different solutions suggested by the international community at the TRIPS Council as well as the WIPO (World Intellectual property Organisation) and examines their effectiveness. Chapter 7 concludes that considering the inability of the present IP system to understand the grass root realities of the indigenous communities as well as the varying situations of the country of origin, the best possible way to recognise the CBD goals in the TRIPS could be better achieved through linking the two instruments by means of the triple disclosure requirement in Article 29 as suggested by the Disclosure Group during the TRIPS Council deliberations. It also recommends that considering the nature of property in GR, a new section/chapter in the TRIPS dealing with GRs would be another workable solution.
Resumo:
In this paper we show that if the electrons in a quantum Hall sample are subjected to a constant electric field in the plane of the material, comparable in magnitude to the background magnetic field on the system of electrons, a multiplicity of edge states localized at different regions of space is produced in the sample. The actions governing the dynamics of these edge states are obtained starting from the well-known Schrödinger field theory for a system of nonrelativistic electrons, where on top of the constant background electric and magnetic fields, the electrons are further subject to slowly varying weak electromagnetic fields. In the regions between the edges, dubbed as the "bulk," the fermions can be integrated out entirely and the dynamics expressed in terms of a local effective action involving the slowly varying electromagnetic potentials. It is further shown how the bulk action is gauge noninvariant in a particular way, and how the edge states conspire to restore the U(1) electromagnetic gauge invariance of the system. In the edge action we obtain a heretofore unnoticed gauge-invariant term that depends on the particular edge. We argue that this term may be detected experimentally as different edges respond differently to a monochromatic probe due to this term
Resumo:
In 1931 Dirac studied the motion of an electron in the field of a magnetic monopole and found that the quantization of electric charge can be explained by postulating the mere existence of a magnetic monopole. Since 1974 there has been a resurgence of interest in magnetic monopole due to the work of ‘t’ Hooft and Polyakov who independently observed that monopoles can exist as finite energy topologically stable solutions to certain spontaneously broken gauge theories. The thesis, “Studies on Magnetic Monopole Solutions of Non-abelian Gauge Theories and Related Problems”, reports a systematic investigation of classical solutions of non-abelian gauge theories with special emphasis on magnetic monopoles and dyons which possess both electric and magnetic charges. The formation of bound states of a dyon with fermions and bosons is also studied in detail. The thesis opens with an account of a new derivation of a relationship between the magnetic charge of a dyon and the topology of the gauge fields associated with it. Although this formula has been reported earlier in the literature, the present method has two distinct advantages. In the first place, it does not depend either on the mechanism of symmetry breaking or on the nature of the residual symmetry group. Secondly, the results can be generalized to finite temperature monopoles.
Resumo:
Depending on the 3He concentration, thermal nucleation in 3-4He supersaturated liquid mixtures at negative pressures may be originated either by bubble or by 3rich drop formation. We have investigated this phenomenon within a density-functional approach, determining the regions in the pressure¿3He-concentration plane where bubbles or drops likely drive the nucleation process. As an illustrative example, we also give the homogeneous nucleation pressure corresponding to 50 and 100 mK temperature.
Resumo:
The objective of this thesis is to study the time dependent behaviour of some complex queueing and inventory models. It contains a detailed analysis of the basic stochastic processes underlying these models. In the theory of queues, analysis of time dependent behaviour is an area.very little developed compared to steady state theory. Tine dependence seems certainly worth studying from an application point of view but unfortunately, the analytic difficulties are considerable. Glosod form solutions are complicated even for such simple models as M/M /1. Outside M/>M/1, time dependent solutions have been found only in special cases and involve most often double transforms which provide very little insight into the behaviour of the queueing systems themselves. In inventory theory also There is not much results available giving the time dependent solution of the system size probabilities. Our emphasis is on explicit results free from all types of transforms and the method used may be of special interest to a wide variety of problems having regenerative structure.
Resumo:
We investigate chaotic, memory, and cooling rate effects in the three-dimensional Edwards-Anderson model by doing thermoremanent (TRM) and ac susceptibility numerical experiments and making a detailed comparison with laboratory experiments on spin glasses. In contrast to the experiments, the Edwards-Anderson model does not show any trace of reinitialization processes in temperature change experiments (TRM or ac). A detailed comparison with ac relaxation experiments in the presence of dc magnetic field or coupling distribution perturbations reveals that the absence of chaotic effects in the Edwards-Anderson model is a consequence of the presence of strong cooling rate effects. We discuss possible solutions to this discrepancy, in particular the smallness of the time scales reached in numerical experiments, but we also question the validity of the Edwards-Anderson model to reproduce the experimental results.
Resumo:
Solid waste management nowadays is an important environmental issue in country like India. Statistics show that there has been substantial increase in the solid waste generation especially in the urban areas. This trend can be ascribed to rapid population growth, changing lifestyles, food habits, and change in living standards, lack of financial resources, institutional weaknesses, improper choice of technology and public apathy towards municipal solid waste. Waste is directly related to the consumption of resources and dumping to the land. Ecological footprint analysis – an impact assessment environment management tool makes a relationship between two factors- the amount of land required to dispose per capita generated waste. Ecological footprint analysis is a quantitative tool that represents the ecological load imposed on the earth by humans in spatial terms. By quantifying the ecological footprint we can formulate strategies to reduce the footprint and there by having a sustainable living. In this paper, an attempt is made to explore the tool Ecological Footprint Analysis with special emphasis to waste generation. The paper also discusses and analyses the waste footprint of Kochi city,India. An attempt is also made to suggest strategies to reduce the waste footprint thereby making the city sustainable, greener and cleaner
Resumo:
This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.
Resumo:
The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by the trajectories of the particles of the fluid. The method leads to a sequence of uniquely determined approximate solutions with a high degree of regularity containing a convergent subsequence with limit function v such that v is a weak solution of the Navier-Stokes equations.
Resumo:
Die Ionisation von H2 in intensiven Laserpulsen wird mit Hilfe der numerischen Integration der zeitabhängigen Schrödingergleichung für ein Einelektronenmodell untersucht, das die Vibrationsbewegung berücksichtigt. Die Spektren der kinetischen Elektronenenergie hängen stark von der Vibrationsquantenzahl des erzeugten H2+ Ions ab. Für bestimmte Vibrationszustände ist die Ausbeute der Elektronen in der Mitte des Plateaus stark erhöht. Der Effekt wird "channel closings" zugeschrieben, die in Atomen durch Variation der Laserintensität beobachtet wurden. The ionization of H2 in intense laser pulses is studied by numerical integration of the time-dependent Schrödinger equation for a single-active-electron model including the vibrational motion. The electron kinetic energy spectra in high-order above-threshold ionization are strongly dependent on the vibrational quantum number of the created H2+ ion. For certain vibrational states, the electron yield in the mid-plateau region is strongly enhanced. The effect is attributed to channel closings, which were previously observed in atoms by varying the laser intensity.
Resumo:
Standard redox potentials E^0(M^z+x/M^z+) in acidic solutions for group 5 elements including element 105 (Ha) and the actinide, Pa, have been estimated on the basis of the ionization potentials calculated via the multiconfiguration Dirac-Fock method. Stability of the pentavalent state was shown to increase along the group from V to Ha, while that of the tetra- and trivalent states decreases in this direction. Our estimates have shown no extra stability of the trivalent state of hahnium. Element 105 should form mixed-valence complexes by analogy with Nb due to the similar values of their potentials E^0(M^3+/M^2+). The stability of the maximumoxidation state of the elements decreases in the direction 103 > 104 > 105.
Resumo:
To study the complex formation of group 5 elements (Nb, Ta, Ha, and pseudoanalog Pa) in aqueous HCI solutions of medium and high concentrations the electronic structures of anionic complexes of these elements [MCl_6]^-, [MOCl_4]^-, [M(OH)-2 Cl_4]^-, and [MOCl_5]^2- have been calculated using the relativistic Dirac-Slater Discrete-Variational Method. The charge density distribution analysis has shown that tantalum occupies a specific position in the group and has the highest tendency to form the pure halide complex, [TaCl_6-. This fact along with a high covalency of this complex explains its good extractability into aliphatic amines. Niobium has equal trends to form pure halide [NbCl_6]^- and oxyhalide [NbOCl_5]^2- species at medium and high acid concentrations. Protactinium has a slight preference for the [PaOCl_5]^2- form or for the pure halide complexes with coordination number higher than 6 under these conditions. Element 105 at high HCl concentrations will have a preference to form oxyhalide anionic complex [HaOCl_5]^2- rather than [HaCl_6]^-. For the same sort of anionic oxychloride complexes an estimate has been done of their partition between the organic and aqueous phases in the extraction by aliphatic amines, which shows the following succession of the partition coefficients: P_Nb < P_Ha < P_Pa.