979 resultados para Streptococcus thermophilus
Resumo:
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.
Resumo:
The objective of this work was to isolate and characterize tannin-tolerant ruminal bacteria from crossbred Holstein x Zebu cows fed a chopped mixture of elephant grass (Pennisetum purpureum), young stems of "angico-vermelho" (Parapiptadenia rigida), and banana tree (Musa sp.) leaves. A total of 117 bacteria strains were isolated from enrichment cultures of rumen microflora in medium containing tannin extracts. Of these, 11 isolates were able to tolerate up to 3 g L-1 of tannins. Classical characterization procedures indicated that different morphological and physiological groups were represented. Restriction fragments profiles using Alu1 and Taq1 of 1,450 bp PCR products from the 16S rRNA gene grouped the 11 isolates into types I to VI. Sequencing of 16S rRNA PCR products was used for identification. From the 11 strains studied, seven were not identifiable by the methods used in this work, two were strains of Butyrivibrio fibrisolvens, and two of Streptococcus bovis.
Resumo:
Objectives:To analyse which are the main variables that influence primary care professionals, in the prescription of antibiotics in patients with acute pharyngitis.To analyse which is the diagnosis pattern used by primary care professionals towards cutepharyngitis. To recognize the clinical and analytical criteria that primary care professionals use, to determine antibiotic treatment in acute pharyngitis.To identify the main clinical variables related with the prescription of antibiotics by primary care professionals, in acute pharyngitis treatment. Design: Cross-‐sectional study Participants:165 primary care professionals from the Sanitary Region of Girona not attending paediatric patients and randomly selected from 29 ABS managed by two of the main health care providers: Insitut Català de la Salut (ICS) and Institut d’Assistència Sanitària (IAS) Main outcome measures: Each participant will fill out a questionnaire with personal and workplace questions, as well as about knowledge and attitude in front of the acute pharyngitis caused by group A streptococci. They will also answer 4 clinical questions about correct treatment and diagnosis of acute pharyngitis caused by group A streptococci
Resumo:
Intrathecal injections of 50 to 100 micro g of (N-acetylmuramyl-L-alanyl-D-isoglutamine) muramyl dipeptide (MDP)/rabbit dose-dependently triggered tumor necrosis factor alpha (TNF-alpha) secretion (12 to 40,000 pg/ml) preceding the influx of leukocytes in the subarachnoid space of rabbits. Intrathecal instillation of heat-killed unencapsulated R6 pneumococci produced a comparable leukocyte influx but only a minimal level of preceding TNF-alpha secretion. The stereochemistry of the first amino acid (L-alanine) of the MDP played a crucial role with regard to its inflammatory potential. Isomers harboring D-alanine in first position did not induce TNF-alpha secretion and influx of leukocytes. This stereospecificity of MDPs was also confirmed by measuring TNF-alpha release from human peripheral mononuclear blood cells stimulated in vitro. These data show that the inflammatory potential of MDPs depends on the stereochemistry of the first amino acid of the peptide side chain and suggest that intact pneumococci and MDPs induce inflammation by different pathways.
Resumo:
Combination therapy may improve the outcome of Streptococcus pneumoniae-induced bacteraemia. Here we tested the combination of two antipneumococcal agents, daptomycin and Cpl-1 (the pneumococcal Cp-1 bacteriophage lysin), in a mouse model of pneumococcal bacteraemia. Mice were challenged intraperitoneally (i.p.) with 10(6)CFU of the extremely virulent serotype 2 S. pneumoniae D39 isolate. Subtherapeutic doses of daptomycin (0.4mg/kg) and Cpl-1 (0.4mg/kg and 1mg/kg) were administrated i.p. either alone or in combination by a single bolus injection 1h after bacterial challenge. Survival rates of animals were followed over a period of 7 days. Daptomycin (0.4mg/kg) in combination with Cpl-1 (0.4mg/kg) significantly increased the percentage of surviving mice at Day 7 (80%) compared with the untreated control (0%) and daptomycin or Cpl-1 monotherapy (35% and 0%, respectively). Whilst increasing the concentration of Cpl-1 to 1.0mg/kg did not improve survival when injected alone, its combination with 0.4mg/kg daptomycin further increased the survival rate to 95%. Thus, it was found that the combination of daptomycin with Cpl-1 was synergistic and bactericidal against S. pneumoniae in a mouse model of pneumococcal bacteraemia. To our knowledge, this is the first report of synergism between daptomycin and a phage lysin demonstrated in vivo. Such a combination could represent an interesting alternative therapy for the treatment of pneumococcal bacteraemia/sepsis and possibly other severe pneumococcal infections.
Resumo:
Abstract Background: Tigecycline, an expanded broad-spectrum glycylcycline, exhibits in vitro activity against many common pathogens associated with community-acqui red pneumonia (CAP), as well as penetration into lung tissues that suggests effectiveness in ho spitalized CAP patients. The aim of the present study was to compare the efficacy and safety of intravenous (IV) tigecycline with IV levofloxacin in hospitalized adults with CAP. Methods: In this prospective, double-blin d, non-inferiority phase 3 trial, eligible patients with a clinical diagnosis of CAP supported by radiographic evidence were stratified by Fine Pneumonia Severity Index and randomized to tigecycline or levofloxacin for 7-14 days of therapy. Co-primary efficacy endpoints were clinical response in the clinically evaluable (CE) and clinical modified intent- to-treat (c-mITT) populations at te st-of-cure (Day 10-21 post-therapy). Results: Of the 428 patients who received at least on e dose of study drug, 79% had CAP of mild-moderate severity according to their Fine score. Clinical cure rates for the CE population were 88.9% for tigecycline and 85.3% for levofloxac in. Corresponding c-mITT population rates were 83.7% and 81.5%, respectively. Eradication rates for Streptococcus pneumoniae were 92% for tigecycline and 89% for levofloxac in. Nausea, vomiting, and diarrhoea were the most frequently reported adverse events. Rates of premature disc continuation of study drug or study withdrawal because of any adverse event were similar for both study drugs. Conclusion: These findings suggest that IV tigecycline is non-inferior to IV levofloxacin and is generally well-tolerated in the treatment of hospitalized adults with CAP.
Resumo:
Pneumolysin (PLY) is a key Streptococcus pneumoniae virulence factor and potential candidate for inclusion in pneumococcal subunit vaccines. Dendritic cells (DC) play a key role in the initiation and instruction of adaptive immunity, but the effects of PLY on DC have not been widely investigated. Endotoxin-free PLY enhanced costimulatory molecule expression on DC but did not induce cytokine secretion. These effects have functional significance as adoptive transfer of DC exposed to PLY and antigen resulted in stronger antigen-specific T cell proliferation than transfer of DC exposed to antigen alone. PLY synergized with TLR agonists to enhance secretion of the proinflammatory cytokines IL-12, IL-23, IL-6, IL-1β, IL-1α and TNF-α by DC and enhanced cytokines including IL-17A and IFN-γ by splenocytes. PLY-induced DC maturation and cytokine secretion by DC and splenocytes was TLR4-independent. Both IL-17A and IFN-γ are required for protective immunity to pneumococcal infection and intranasal infection of mice with PLY-deficient pneumococci induced significantly less IFN-γ and IL-17A in the lungs compared to infection with wild-type bacteria. IL-1β plays a key role in promoting IL-17A and was previously shown to mediate protection against pneumococcal infection. The enhancement of IL-1β secretion by whole live S. pneumoniae and by PLY in DC required NLRP3, identifying PLY as a novel NLRP3 inflammasome activator. Furthermore, NLRP3 was required for protective immunity against respiratory infection with S. pneumoniae. These results add significantly to our understanding of the interactions between PLY and the immune system.
Resumo:
The increasing incidence of ciprofloxacin resistance in Streptococcus pneumoniae may limit the efficacy of the new quinolones in difficult-to-treat infections such as meningitis. The aim of the present study was to determine the efficacy of clinafloxacin alone and in combination with teicoplanin and rifampin in the therapy of ciprofloxacin-susceptible and ciprofloxacin-resistant pneumococcal meningitis in rabbits. When used against a penicillin-resistant ciprofloxacin-susceptible strain (Clinafloxacin MIC 0.12 μg/ml), clinafloxacin at a dose of 20 mg/kg per day b.i.d. decreased bacterial concentration by -5.10 log cfu/ml at 24 hr. Combinations did not improve activity. The same clinafloxacin schedule against a penicillin- and ciprofloxacin-resistant strain (Clinafloxacin MIC 0.5 μg/ml) was totally ineffective. Our data suggest that a moderate decrease in quinolone susceptibility, as indicated by the detection of any degree of ciprofloxacin resistance, may render these antibiotics unsuitable for the management of pneumococcal meningitis
Resumo:
Over the past three decades, penicillin-resistant pneumococci have emerged worldwide. In addition, penicillin-resistant strains have also decreased susceptibility to other β-lactams (including cephalosporins) and these strains are often resistant to other antibiotic groups, making the treatment options much more difficult. Nevertheless, the present in vitro definitions of resistance to penicillin and cephalosporins in pneumococci could not be appropriated for all types of pneumococcal infections. Thus, current levels of resistance to penicillin and cephalosporin seem to have little, if any, clinical relevance in nonmeningeal infections (e.g., pneumonia or bacteremia). On the contrary, numerous clinical failures have been reported in patients with pneumococcal meningitis caused by strains with MICs ≥ 0.12 μg/ml, and penicillin should never be used in pneumococcal meningitis except when the strain is known to be fully susceptible to this drug. Today, therapy for pneumococcal meningitis should mainly be selected on the basis of susceptibility to cephalosporins, and most patients may currently be treated with high-dose cefotaxime (±) vancomycin, depending on the levels of resistance in the patient's geographic area. In this review, we present a practical approach, based on current levels of antibiotic resistance, for treating the most prevalent pneumococcal infections. However, it should be emphasized that the most appropriate antibiotic therapy for infections caused by resistant pneumococci remains controversial, and comparative, randomized studies are urgently needed to clarify the best antibiotic therapy for these infections
Resumo:
In 1875, 7 years prior to the description of the Koch bacillus, Klebs visualized the first Streptococcus pneumoniae in pleural fluid. Since then, this organism has played a decisive role in biomedical science. From a biological point of view, it was extensively involved in the development of passive and active immunization by serotherapy and vaccination respectively. Genetic transformation was also first observed in S. pneumoniae, leading to the discovery of DNA. From a clinical point of view, S. pneumoniae is today still a prime cause of otitis media in children and of pneumonia in all age groups, as well as a predominant cause of meningitis and bacteremia. In adults, bacteremia still has a mortality of over 25%. Although S. pneumoniae remained very sensitive to penicillin for many years, penicillin-resistant strains have emerged and increased dramatically over the last 15 years. During this period the frequency of penicillin-resistant isolates has increased from < or = 1% to frequencies varying from 20 to 60% in geographic areas as diverse as South Africa, Spain, France, Hungary, Iceland, Alaska, and numerous regions of the United States and South America. In Switzerland, the current frequency of penicillin-resistant pneumococci ranges between 5 and > or = 10%. The increase in penicillin-resistant pneumococci correlates with the intensive use of beta-lactam antibiotics. The mechanism of resistance is not due to bacterial production of penicillinase but to an alteration of the bacterial target of penicillin, the so-called penicillin-binding proteins. Resistance is subdivided into (1) intermediate level resistance (minimal inhibitory concentration [MIC] of penicillin of 0.1-1 mg/l) and (2) high level resistance (MCI > or = 2 mg/l). The clinical significance of intermediate resistance remains poorly defined. On the other hand, highly resistant strains have been responsible for numerous therapeutic failures, especially in cases of meningitis. Antibiotics recommended against penicillin-resistant pneumococci include cefotaxime, ceftriaxone, imipenem and in some instances vancomycin. However, penicillin-resistant pneumococci tend to present cross-resistances to all the antibiotics of the beta-lactam family and could even become resistant to the last resort drugs mentioned above. Thus, the explosion of resistance to penicillin in pneumococci is a ubiquitous phenomenon which must be fought against by (1) avoiding excessive use of antibiotics, (2) the practice of microbiological sampling of infected foci before treatment, (3) the systematic surveillance of resistance profiles of pneumococci against antibiotics and (4) adequate vaccination of populations at risk.
Resumo:
Résumé: Dans le but de rechercher de nouveaux composés naturels à intérêt thérapeutique, les extraits dichlorométhanique et méthanolique de Zanthoxylum zanthoxyloides (Lam.) Zepernick et Timler (Syn. Fagara zanthoxyloides L.) (Rutaceae), une brosse à dents africaine ont été soumis à un criblage chimique et biologique. Un dépistage des activités: antifongiques contre le champignon phytopathogène Cladosporium cucumerinum et la levure commensale responsable de mycoses chez l'homme Candida albicans, antibactérienne contre la bactérie opportuniste Bacillus subtilis, larvicide contre le moustique vecteur de la fièvre jaune Aedes aegypti et molluscicide contre Biomphalaria glabrata, un escargot impliqué dans la transmission de la schistosomiase urinaire a été réalisé. Les propriétés antiradicalaires et inhibitrices de l'acétylcholinestérase de ces extraits ont aussi été dépistées. Sur la base des résultats obtenus lors de ce screening, l'investigation phytochimique de ces extraits a été entreprise. Elle a abouti à l'isolement de 14 composés, actifs pour la majorité contre Cladosporium cucumerinum et Bacillus subtilis, dont la structure a été établie au moyen de méthodes spectroscopiques (UV, MS, IR, 1H- et 13C-NMR). Des méthodes chimiques (hydrolyse, acétylation) ont été requises pour la confirmation de structures. L'extrait dichlorométhanique a fourni un nouveau composé, un dérivé du phényléthane, ainsi que dix composés connus, dont trois dérivés du phénylpropane, un lignane, un alcaloïde de la famille des benzophénanthridines, un triterpène, deux amides phénoliques et deux amides oléfmiques. L'extrait méthanolique a fourni un nouveau composé avec une fonction endoperoxyde, qui avait montré une activité inhibitrice modérée de l'acétylcholinestérase, ainsi que l'hespéridine et un dérivé de la chélérythrine. Par ailleurs, l'analyse LC/UV/APC1-MS de cet extrait a permis de détecter on-une sept produits connus. Parmi ces composés, se trouvent l'acide divanilloylquinique, la chélérythrine et quatre de ses dérivés: norchélérythrin.e, 6-(2-oxybutyl) dihydrochélérythrine, 6-hydroxy-dihydrochélérythrine et avicine, ainsi qu'une amide phénolique, l'amottianamide. La présence de ces dérivés de la chélérythrine a été mise en évidence dans deux autres espèces du même genre lors d'une étude LC/UV/APCI-MS comparative. Les activités fongicides contre Cladosporium cucumerinum et Candida albicans et bactéricides contre Bacillus subtilis et Streptococcus mutans ATCC 25175, mises en évidence sur plaque CCM et par les tests de dilution dans l'agar de ces composés, permettent de justifier l'utilisation de Zanthoxylum zanthoxyloides (Lam.) Zepemick et Timler comme brosse à dents africaine. Les techniques couplées de pointe utilisées dans cette étude ont montré leur apport inestimable dans le domaine de la recherche phytochimique et les applications futures dans le domaine de déréplication d'extraits bruts. Abstract: With the aim of discovering new natural therapeutics, the dichloromethane and methanol extracts of the African toothbrush tree Zanthoxylum zanthoxyloides (Lam.) Zepernick et Timler (Syn. Fagara zanthoxyloides L.) (Rutaceae), were submitted to biological and chemical assays. The former included: the antifimgal activities of the extracts against the phytopathogenic fungus Cladosporium cucumerinum, the commensal yeast which causes human mycoses Candida albicans, the bactericidal activity against the opportunistic bacteria Bacillus subtilis, the larvicidal activity against the yellow fever-transmitting mosquito Aedes aegypti and the molluscicidal effect on the snail Biomphalaria glabrata involved in the transmission of urinary schistosomiasis. The antiradical and acetylcholinesterase-inhibiting properties of these extracts were also investigated. On the basis of these results, a phytochemical investigation of the dichloromethane and methanol extracts of Zanthoxylum zanthoxyloides was undertaken. Their fractionation led to the isolation of 14 compounds, the majority of which were active against Cladosporium cucumerinum and Bacillus subtilis, whose structures were elucidated by spectroscopic techniques (UV, MS, IR, 1H- and 13C-NMR). Chemical methods (hydrolysis, acetylation) were performed to confirm the structures. The dichloromethane extract yielded a new phenylethane derivative, together with ten known compounds: three phenylpropane derivatives, a lignan, a benzophenanthridine alkaloid, a triterpene and four phenolic and olefinic amides. The methanol extract yielded a new compound with an endoperoxide moiety, which showed moderate acetylcholinesterase-inhibiting activity, together with hesperidin and a chelerythrine derivative. Seven more compounds were detected on-line by LC/UV/APCI-MS. Among the compounds detected were divanilloylquinic acid, chelerythrine and four chelerythrine derivatives: norchelerythrine, 6-(2-oxybuty1)-dihydrochelerythrine, 6-hydroxy dihydrochelerythrine and avicine, together with the phenolic amide amottianamide. Most of the chelerythrine derivatives were also found in two other Zanthoxylum species following LC/UV/APCI-MS analysis. The antifungal activities against Cladosporium cucumerinum and Candida albicans and antibacterial activities against Bacillus subtilis and Streptococcus mutans ATCC 25175, may explain the utilization in traditional medicine of the roots of this plant as a toothbrush. The advanced hyphenated techniques used in this study showed their inestimable contribution to the field of phytochemical research and applications in the field of dereplication of crude extracts.
Resumo:
This study was performed in order to evaluate the efficacy of different mouthrinses whose use is extended in Spain. Six different antiseptic mouthrinses were studied by means of determination of Minimal Inhibitory Concentration (MIC) values against Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhimurium, Bacillus subtilis, Streptococcus mutans, Prevotella intermedia, Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans. Also in vivo experiments were carried out in volunteers by the use of mouthrinses and evaluation of bacterial populations before and after the treatment. Finally, the kinetics of bacterial death was determined. Results suggested that the determination of MIC values is not a reliable method to evaluate the antibacterial effect of such products. On the other hand those rinsing solutions based on the effect of oxygen, such as those containing carbamide peroxide have a greater efficacy against anaerobic bacteria compared with rinses whose active molecule is a disinfectant. Finally, the kinetics of bacterial death demonstrates that the essential oil rinse kills bacteria much faster. All tested mouthrinses were active as antibacterial although those based on oxygen production or essential oils were more active than solutions based on chlorhexidine and Triclosan
Resumo:
INTRODUCTION: Patients undergoing immunosuppressive therapy are at increased risk of infection. Community-acquired pneumonia and invasive pneumococcal disease account for substantial morbidity and mortality in this population and may be prevented by vaccination. Ideally, immunization to pneumococcal antigens should take place before the start of immunosuppressive treatment. Often, however, the treatment cannot be delayed. Little is known about the efficacy of pneumococcal vaccines during immunosuppressive treatment. The objectives of this study were to determine the percentage of vaccine-naïve, immunosuppressed adults with inflammatory diseases seroprotected against Streptococcus pneumoniae and to assess factors associated with the immunogenicity, clinical impact and safety of 23-valent pneumococcal polysaccharide vaccine (PPV) in seronegative subjects. METHODS: This observational study included patients 18 years of age and older who were receiving prednisone ≥20 mg/day or other immunosuppressive drugs. Exclusion criteria were PPV administration in the previous 5 years, intravenous immunoglobulins and pregnancy. Serum immunoglobulin G (IgG) antibody levels against six pneumococcal serotypes were measured. Seropositivity was defined as IgG of 0.5 μg/ml or greater for at least four of six serotypes. Seronegative patients received PPV, and seropositive patients were included as a comparison group. Vaccine response and tolerance were assessed after 4-8 weeks. Disease activity was evaluated on the basis of the Physician Global Assessment scores. Serology was repeated after 1 year, and information on any kind of infection needing medical attention was collected. Outcomes were the proportion of seropositivity and infections between vaccinated and unvaccinated patients. RESULTS: Of 201 included patients, 35 received high-dose corticosteroids and 181 were given immunosuppressive drugs. Baseline seronegativity in 60 (30 %) patients was associated with corticotherapy and lower total IgG. After PPV, disease activity remained unchanged or decreased in 81 % of patients, and 87 % became seropositive. After 1 year, 67 % of vaccinated compared with 90 % of observed patients were seropositive (p < 0.001), whereas the rate of infections did not differ between groups. Those still taking prednisone ≥10 mg/day tended to have poorer serological responses and had significantly more infections. CONCLUSIONS: PPV was safe and moderately effective based on serological response. Seropositivity to pneumococcal antigens significantly reduced the risk of infections. Sustained high-dose corticosteroids were associated with poor vaccine response and more infections.
Resumo:
Background: Probiotics appear to be beneficial in inflammatory bowel disease, but their mechanism of action is incompletely understood. We investigated whether probiotic-derived sphingomyelinase mediates this beneficial effect. Methodology/Principal Findings: Neutral sphingomyelinase (NSMase) activity was measured in sonicates of the probiotic L.brevis (LB)and S. thermophilus (ST) and the non-probiotic E. coli EC) and E. faecalis (EF). Lamina propria mononuclear cells (LPMC) were obtained from patients with Crohn"s disease (CD) and Ulcerative Colitis (UC), and peripheral blood mononuclear cells (PBMC) from healthy volunteers, analysing LPMC and PBMC apoptosis susceptibility, reactive oxygen species (ROS) generation and JNK activation. In some experiments, sonicates were preincubated with GSH or GW4869, a specific NSMase inhibitor. NSMase activity of LB and ST was 10-fold that of EC and EF sonicates. LB and ST sonicates induced significantly more apoptosis of CD and UC than control LPMC, whereas EC and EF sonicates failed to induce apoptosis. Pre-stimulation with anti-CD3/CD28 induced a significant and time-dependent increase in LB-induced apoptosis of LPMC and PBMC. Exposure to LB sonicates resulted in JNK activation and ROS production by LPMC. NSMase activity of LB sonicates was completely abrogated by GW4869, causing a dose-dependent reduction of LB -induced poptosis. LB and ST selectively induced immune cell apoptosis, an effect dependent on the degree of cell activation and mediated by bacterial NSMase. Conclusions: These results suggest that induction of immune cell apoptosis is a mechanism of action of some probiotics and that NSMase-mediated ceramide generation contributes to the therapeutic effects of probiotics.
Resumo:
Pneumococcal diseases are the first cause of bacterial infections in adult and in the aged adult. While its considerable morbi-mortality is potentially preventable through vaccination, the interest of anti-pneumococcal vaccination in these populations is still debated. Effectiveness appraisal of current anti-pneumococcal vaccines and the perspectives in terms of preventive strategies against Streptococcus pneumoniae infections in the adult population are presented.