887 resultados para Stream Ciphers, Cryptanalysis, Algebraic Attacks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questions: Do Mediterranean riparian guilds show distinct responses to stream water declines? If observed,which are the most sensitive and resilient guilds and theirmost affected attributes? Location: Tie¿tar river below the Rosarito dam, central-western Spain. Methods: We identified riparian guilds based on key woody species features and species distribution within this Mediterranean river corridor, and evaluated similarity of their responses to long-term flow alteration (i.e. stream water declines since dam construction in 1959). Hierarchical cluster analysis was used to group surveyed vegetation bands according to species composition. The groups were designated as riparian guilds where each vegetation group comprising a guild: (1) contains species sharing similar features (using PCA); and (2) shares a similar environment (using DCA). Changes in several guild attributes (i.e. dominance and species composition, diversity and establishment patterns) during the regulated period were compared statistically. We used pre- and post-dam established vegetation bands identified based on old (1956) and modern (2006) aerial photographs and field measurements of woody species diameter. Results: Responses to flow alterations varied between guilds according to ecological requirements of their species. The ability to survive water stress (i.e. ?Xeric? guilds) and drag forces caused by floods (?Torrential? guilds) allowed certain pioneer shrub-dominated guilds (e.g. Flueggea tinctoria and Salix salviifolia) to spread on newly emerged surfaces downward to the main channel after flow alterations, although new shrubland had less species diversity than pre-dam shrubland. In contrast, new hydromorphological conditions following damming limited recruitment of native late-successional tree guilds sensitive to floods (to drag forces, inundation and anoxia; i.e. ?Slow-water? and ?Flood-sensitive?, respectively) and those with greater water requirements (i.e. ?Hydric?) (e.g. Alnus glutinosa and Celtis australis), although species diversity increased in this mature forest through co-existence of remaining riparian species and new arrival of upland species. Conclusions: Changes in several riparian attributes after flow alterations differed between guilds. Stream water declines after damming caused shifts in species-poor pioneer shrubland downwards to the watered channel, resulting in severe declines ofmaturenative forest.Understanding vegetation guild responses provides information about general trends in plant populations and assemblage structures expected to occur during river development and flow regulation, increasing our capacity to detect and synthesize complex flowalteration?riparian ecosystem response relationships, and anticipate irreversible impacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an alternative Forward Error Correction scheme, based on Reed-Solomon codes, with the aim of protecting the transmission of RTP-multimedia streams: the inter-packet symbol approach. This scheme is based on an alternative bit structure that allocates each symbol of the Reed-Solomon code in several RTP-media packets. This characteristic permits to exploit better the recovery capability of Reed-Solomon codes against bursty packet losses. The performance of our approach has been studied in terms of encoding/decoding time versus recovery capability, and compared with other proposed schemes in the literature. The theoretical analysis has shown that our approach allows the use of a lower size of the Galois Fields compared to other solutions. This lower size results in a decrease of the required encoding/decoding time while keeping a comparable recovery capability. Finally, experimental results have been carried out to assess the performance of our approach compared to other schemes in a simulated environment, where models for wireless and wireline channels have been considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, applications in domains such as telecommunications, network security or large scale sensor networks showed the limits of the traditional store-then-process paradigm. In this context, Stream Processing Engines emerged as a candidate solution for all these applications demanding for high processing capacity with low processing latency guarantees. With Stream Processing Engines, data streams are not persisted but rather processed on the fly, producing results continuously. Current Stream Processing Engines, either centralized or distributed, do not scale with the input load due to single-node bottlenecks. Moreover, they are based on static configurations that lead to either under or over-provisioning. This Ph.D. thesis discusses StreamCloud, an elastic paralleldistributed stream processing engine that enables for processing of large data stream volumes. Stream- Cloud minimizes the distribution and parallelization overhead introducing novel techniques that split queries into parallel subqueries and allocate them to independent sets of nodes. Moreover, Stream- Cloud elastic and dynamic load balancing protocols enable for effective adjustment of resources depending on the incoming load. Together with the parallelization and elasticity techniques, Stream- Cloud defines a novel fault tolerance protocol that introduces minimal overhead while providing fast recovery. StreamCloud has been fully implemented and evaluated using several real word applications such as fraud detection applications or network analysis applications. The evaluation, conducted using a cluster with more than 300 cores, demonstrates the large scalability, the elasticity and fault tolerance effectiveness of StreamCloud. Resumen En los útimos años, aplicaciones en dominios tales como telecomunicaciones, seguridad de redes y redes de sensores de gran escala se han encontrado con múltiples limitaciones en el paradigma tradicional de bases de datos. En este contexto, los sistemas de procesamiento de flujos de datos han emergido como solución a estas aplicaciones que demandan una alta capacidad de procesamiento con una baja latencia. En los sistemas de procesamiento de flujos de datos, los datos no se persisten y luego se procesan, en su lugar los datos son procesados al vuelo en memoria produciendo resultados de forma continua. Los actuales sistemas de procesamiento de flujos de datos, tanto los centralizados, como los distribuidos, no escalan respecto a la carga de entrada del sistema debido a un cuello de botella producido por la concentración de flujos de datos completos en nodos individuales. Por otra parte, éstos están basados en configuraciones estáticas lo que conducen a un sobre o bajo aprovisionamiento. Esta tesis doctoral presenta StreamCloud, un sistema elástico paralelo-distribuido para el procesamiento de flujos de datos que es capaz de procesar grandes volúmenes de datos. StreamCloud minimiza el coste de distribución y paralelización por medio de una técnica novedosa la cual particiona las queries en subqueries paralelas repartiéndolas en subconjuntos de nodos independientes. Ademas, Stream- Cloud posee protocolos de elasticidad y equilibrado de carga que permiten una optimización de los recursos dependiendo de la carga del sistema. Unidos a los protocolos de paralelización y elasticidad, StreamCloud define un protocolo de tolerancia a fallos que introduce un coste mínimo mientras que proporciona una rápida recuperación. StreamCloud ha sido implementado y evaluado mediante varias aplicaciones del mundo real tales como aplicaciones de detección de fraude o aplicaciones de análisis del tráfico de red. La evaluación ha sido realizada en un cluster con más de 300 núcleos, demostrando la alta escalabilidad y la efectividad tanto de la elasticidad, como de la tolerancia a fallos de StreamCloud.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraordinary increase of new information technologies, the development of Internet, the electronic commerce, the e-government, mobile telephony and future cloud computing and storage, have provided great benefits in all areas of society. Besides these, there are new challenges for the protection of information, such as the loss of confidentiality and integrity of electronic documents. Cryptography plays a key role by providing the necessary tools to ensure the safety of these new media. It is imperative to intensify the research in this area, to meet the growing demand for new secure cryptographic techniques. The theory of chaotic nonlinear dynamical systems and the theory of cryptography give rise to the chaotic cryptography, which is the field of study of this thesis. The link between cryptography and chaotic systems is still subject of intense study. The combination of apparently stochastic behavior, the properties of sensitivity to initial conditions and parameters, ergodicity, mixing, and the fact that periodic points are dense, suggests that chaotic orbits resemble random sequences. This fact, and the ability to synchronize multiple chaotic systems, initially described by Pecora and Carroll, has generated an avalanche of research papers that relate cryptography and chaos. The chaotic cryptography addresses two fundamental design paradigms. In the first paradigm, chaotic cryptosystems are designed using continuous time, mainly based on chaotic synchronization techniques; they are implemented with analog circuits or by computer simulation. In the second paradigm, chaotic cryptosystems are constructed using discrete time and generally do not depend on chaos synchronization techniques. The contributions in this thesis involve three aspects about chaotic cryptography. The first one is a theoretical analysis of the geometric properties of some of the most employed chaotic attractors for the design of chaotic cryptosystems. The second one is the cryptanalysis of continuos chaotic cryptosystems and finally concludes with three new designs of cryptographically secure chaotic pseudorandom generators. The main accomplishments contained in this thesis are: v Development of a method for determining the parameters of some double scroll chaotic systems, including Lorenz system and Chua’s circuit. First, some geometrical characteristics of chaotic system have been used to reduce the search space of parameters. Next, a scheme based on the synchronization of chaotic systems was built. The geometric properties have been employed as matching criterion, to determine the values of the parameters with the desired accuracy. The method is not affected by a moderate amount of noise in the waveform. The proposed method has been applied to find security flaws in the continuous chaotic encryption systems. Based on previous results, the chaotic ciphers proposed by Wang and Bu and those proposed by Xu and Li are cryptanalyzed. We propose some solutions to improve the cryptosystems, although very limited because these systems are not suitable for use in cryptography. Development of a method for determining the parameters of the Lorenz system, when it is used in the design of two-channel cryptosystem. The method uses the geometric properties of the Lorenz system. The search space of parameters has been reduced. Next, the parameters have been accurately determined from the ciphertext. The method has been applied to cryptanalysis of an encryption scheme proposed by Jiang. In 2005, Gunay et al. proposed a chaotic encryption system based on a cellular neural network implementation of Chua’s circuit. This scheme has been cryptanalyzed. Some gaps in security design have been identified. Based on the theoretical results of digital chaotic systems and cryptanalysis of several chaotic ciphers recently proposed, a family of pseudorandom generators has been designed using finite precision. The design is based on the coupling of several piecewise linear chaotic maps. Based on the above results a new family of chaotic pseudorandom generators named Trident has been designed. These generators have been specially designed to meet the needs of real-time encryption of mobile technology. According to the above results, this thesis proposes another family of pseudorandom generators called Trifork. These generators are based on a combination of perturbed Lagged Fibonacci generators. This family of generators is cryptographically secure and suitable for use in real-time encryption. Detailed analysis shows that the proposed pseudorandom generator can provide fast encryption speed and a high level of security, at the same time. El extraordinario auge de las nuevas tecnologías de la información, el desarrollo de Internet, el comercio electrónico, la administración electrónica, la telefonía móvil y la futura computación y almacenamiento en la nube, han proporcionado grandes beneficios en todos los ámbitos de la sociedad. Junto a éstos, se presentan nuevos retos para la protección de la información, como la suplantación de personalidad y la pérdida de la confidencialidad e integridad de los documentos electrónicos. La criptografía juega un papel fundamental aportando las herramientas necesarias para garantizar la seguridad de estos nuevos medios, pero es imperativo intensificar la investigación en este ámbito para dar respuesta a la demanda creciente de nuevas técnicas criptográficas seguras. La teoría de los sistemas dinámicos no lineales junto a la criptografía dan lugar a la ((criptografía caótica)), que es el campo de estudio de esta tesis. El vínculo entre la criptografía y los sistemas caóticos continúa siendo objeto de un intenso estudio. La combinación del comportamiento aparentemente estocástico, las propiedades de sensibilidad a las condiciones iniciales y a los parámetros, la ergodicidad, la mezcla, y que los puntos periódicos sean densos asemejan las órbitas caóticas a secuencias aleatorias, lo que supone su potencial utilización en el enmascaramiento de mensajes. Este hecho, junto a la posibilidad de sincronizar varios sistemas caóticos descrita inicialmente en los trabajos de Pecora y Carroll, ha generado una avalancha de trabajos de investigación donde se plantean muchas ideas sobre la forma de realizar sistemas de comunicaciones seguros, relacionando así la criptografía y el caos. La criptografía caótica aborda dos paradigmas de diseño fundamentales. En el primero, los criptosistemas caóticos se diseñan utilizando circuitos analógicos, principalmente basados en las técnicas de sincronización caótica; en el segundo, los criptosistemas caóticos se construyen en circuitos discretos u ordenadores, y generalmente no dependen de las técnicas de sincronización del caos. Nuestra contribución en esta tesis implica tres aspectos sobre el cifrado caótico. En primer lugar, se realiza un análisis teórico de las propiedades geométricas de algunos de los sistemas caóticos más empleados en el diseño de criptosistemas caóticos vii continuos; en segundo lugar, se realiza el criptoanálisis de cifrados caóticos continuos basados en el análisis anterior; y, finalmente, se realizan tres nuevas propuestas de diseño de generadores de secuencias pseudoaleatorias criptográficamente seguros y rápidos. La primera parte de esta memoria realiza un análisis crítico acerca de la seguridad de los criptosistemas caóticos, llegando a la conclusión de que la gran mayoría de los algoritmos de cifrado caóticos continuos —ya sean realizados físicamente o programados numéricamente— tienen serios inconvenientes para proteger la confidencialidad de la información ya que son inseguros e ineficientes. Asimismo una gran parte de los criptosistemas caóticos discretos propuestos se consideran inseguros y otros no han sido atacados por lo que se considera necesario más trabajo de criptoanálisis. Esta parte concluye señalando las principales debilidades encontradas en los criptosistemas analizados y algunas recomendaciones para su mejora. En la segunda parte se diseña un método de criptoanálisis que permite la identificaci ón de los parámetros, que en general forman parte de la clave, de algoritmos de cifrado basados en sistemas caóticos de Lorenz y similares, que utilizan los esquemas de sincronización excitador-respuesta. Este método se basa en algunas características geométricas del atractor de Lorenz. El método diseñado se ha empleado para criptoanalizar eficientemente tres algoritmos de cifrado. Finalmente se realiza el criptoanálisis de otros dos esquemas de cifrado propuestos recientemente. La tercera parte de la tesis abarca el diseño de generadores de secuencias pseudoaleatorias criptográficamente seguras, basadas en aplicaciones caóticas, realizando las pruebas estadísticas, que corroboran las propiedades de aleatoriedad. Estos generadores pueden ser utilizados en el desarrollo de sistemas de cifrado en flujo y para cubrir las necesidades del cifrado en tiempo real. Una cuestión importante en el diseño de sistemas de cifrado discreto caótico es la degradación dinámica debida a la precisión finita; sin embargo, la mayoría de los diseñadores de sistemas de cifrado discreto caótico no ha considerado seriamente este aspecto. En esta tesis se hace hincapié en la importancia de esta cuestión y se contribuye a su esclarecimiento con algunas consideraciones iniciales. Ya que las cuestiones teóricas sobre la dinámica de la degradación de los sistemas caóticos digitales no ha sido totalmente resuelta, en este trabajo utilizamos algunas soluciones prácticas para evitar esta dificultad teórica. Entre las técnicas posibles, se proponen y evalúan varias soluciones, como operaciones de rotación de bits y desplazamiento de bits, que combinadas con la variación dinámica de parámetros y con la perturbación cruzada, proporcionan un excelente remedio al problema de la degradación dinámica. Además de los problemas de seguridad sobre la degradación dinámica, muchos criptosistemas se rompen debido a su diseño descuidado, no a causa de los defectos esenciales de los sistemas caóticos digitales. Este hecho se ha tomado en cuenta en esta tesis y se ha logrado el diseño de generadores pseudoaleatorios caóticos criptogr áficamente seguros.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As wireless sensor networks are usually deployed in unattended areas, security policies cannot be updated in a timely fashion upon identification of new attacks. This gives enough time for attackers to cause significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. On the other hand, mobility can make the sensor network more resilient to failures, reactive to events, and able to support disparate missions with a common set of sensors, yet the problem of security becomes more complicated. In order to address the issue of security in networks with mobile nodes, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. We also propose a special way to treat mobile nodes, which is the main novelty of this work. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. These techniques are further coupled with a reputation system, in this way isolating compromised nodes in timely fashion. The proposal exhibits good performances at detecting and confining previously unseen attacks, including the cases when mobile nodes are compromised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In ubiquitous data stream mining applications, different devices often aim to learn concepts that are similar to some extent. In these applications, such as spam filtering or news recommendation, the data stream underlying concept (e.g., interesting mail/news) is likely to change over time. Therefore, the resultant model must be continuously adapted to such changes. This paper presents a novel Collaborative Data Stream Mining (Coll-Stream) approach that explores the similarities in the knowledge available from other devices to improve local classification accuracy. Coll-Stream integrates the community knowledge using an ensemble method where the classifiers are selected and weighted based on their local accuracy for different partitions of the feature space. We evaluate Coll-Stream classification accuracy in situations with concept drift, noise, partition granularity and concept similarity in relation to the local underlying concept. The experimental results show that Coll-Stream resultant model achieves stability and accuracy in a variety of situations using both synthetic and real world datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early propagation effect (EPE) is a critical problem in conventional dual-rail logic implementations against Side Channel Attacks (SCAs). Among previous EPE-resistant architectures, PA-DPL logic offers EPE-free capability at relatively low cost. However, its separate dual core structure is a weakness when facing concentrated EM attacks where a tiny EM probe can be precisely positioned closer to one of the two cores. In this paper, we present an PA-DPL dual-core interleaved structure to strengthen resistance against sophisticated EM attacks on Xilinx FPGA implementations. The main merit of the proposed structure is that every two routing in each signal pair are kept identical even the dual cores are interleaved together. By minimizing the distance between the complementary routings and instances of both cores, even the concentrated EM measurement cannot easily distinguish the minor EM field unbalance. In PA- DPL, EPE is avoided by compressing the evaluation phase to a small portion of the clock period, therefore, the speed is inevitably limited. Regarding this, we made an improvement to extend the duty cycle of evaluation phase to more than 40 percent, yielding a larger maximum working frequency. The detailed design flow is also presented. We validate the security improvement against EM attack by implementing a simplified AES co-processor in Virtex-5 FPGA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis estudia la monitorización y gestión de la Calidad de Experiencia (QoE) en los servicios de distribución de vídeo sobre IP. Aborda el problema de cómo prevenir, detectar, medir y reaccionar a las degradaciones de la QoE desde la perspectiva de un proveedor de servicios: la solución debe ser escalable para una red IP extensa que entregue flujos individuales a miles de usuarios simultáneamente. La solución de monitorización propuesta se ha denominado QuEM(Qualitative Experience Monitoring, o Monitorización Cualitativa de la Experiencia). Se basa en la detección de las degradaciones de la calidad de servicio de red (pérdidas de paquetes, disminuciones abruptas del ancho de banda...) e inferir de cada una una descripción cualitativa de su efecto en la Calidad de Experiencia percibida (silencios, defectos en el vídeo...). Este análisis se apoya en la información de transporte y de la capa de abstracción de red de los flujos codificados, y permite caracterizar los defectos más relevantes que se observan en este tipo de servicios: congelaciones, efecto de “cuadros”, silencios, pérdida de calidad del vídeo, retardos e interrupciones en el servicio. Los resultados se han validado mediante pruebas de calidad subjetiva. La metodología usada en esas pruebas se ha desarrollado a su vez para imitar lo más posible las condiciones de visualización de un usuario de este tipo de servicios: los defectos que se evalúan se introducen de forma aleatoria en medio de una secuencia de vídeo continua. Se han propuesto también algunas aplicaciones basadas en la solución de monitorización: un sistema de protección desigual frente a errores que ofrece más protección a las partes del vídeo más sensibles a pérdidas, una solución para minimizar el impacto de la interrupción de la descarga de segmentos de Streaming Adaptativo sobre HTTP, y un sistema de cifrado selectivo que encripta únicamente las partes del vídeo más sensibles. También se ha presentado una solución de cambio rápido de canal, así como el análisis de la aplicabilidad de los resultados anteriores a un escenario de vídeo en 3D. ABSTRACT This thesis proposes a comprehensive approach to the monitoring and management of Quality of Experience (QoE) in multimedia delivery services over IP. It addresses the problem of preventing, detecting, measuring, and reacting to QoE degradations, under the constraints of a service provider: the solution must scale for a wide IP network delivering individual media streams to thousands of users. The solution proposed for the monitoring is called QuEM (Qualitative Experience Monitoring). It is based on the detection of degradations in the network Quality of Service (packet losses, bandwidth drops...) and the mapping of each degradation event to a qualitative description of its effect in the perceived Quality of Experience (audio mutes, video artifacts...). This mapping is based on the analysis of the transport and Network Abstraction Layer information of the coded stream, and allows a good characterization of the most relevant defects that exist in this kind of services: screen freezing, macroblocking, audio mutes, video quality drops, delay issues, and service outages. The results have been validated by subjective quality assessment tests. The methodology used for those test has also been designed to mimic as much as possible the conditions of a real user of those services: the impairments to evaluate are introduced randomly in the middle of a continuous video stream. Based on the monitoring solution, several applications have been proposed as well: an unequal error protection system which provides higher protection to the parts of the stream which are more critical for the QoE, a solution which applies the same principles to minimize the impact of incomplete segment downloads in HTTP Adaptive Streaming, and a selective scrambling algorithm which ciphers only the most sensitive parts of the media stream. A fast channel change application is also presented, as well as a discussion about how to apply the previous results and concepts in a 3D video scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los avances en el hardware permiten disponer de grandes volúmenes de datos, surgiendo aplicaciones que deben suministrar información en tiempo cuasi-real, la monitorización de pacientes, ej., el seguimiento sanitario de las conducciones de agua, etc. Las necesidades de estas aplicaciones hacen emerger el modelo de flujo de datos (data streaming) frente al modelo almacenar-para-despuésprocesar (store-then-process). Mientras que en el modelo store-then-process, los datos son almacenados para ser posteriormente consultados; en los sistemas de streaming, los datos son procesados a su llegada al sistema, produciendo respuestas continuas sin llegar a almacenarse. Esta nueva visión impone desafíos para el procesamiento de datos al vuelo: 1) las respuestas deben producirse de manera continua cada vez que nuevos datos llegan al sistema; 2) los datos son accedidos solo una vez y, generalmente, no son almacenados en su totalidad; y 3) el tiempo de procesamiento por dato para producir una respuesta debe ser bajo. Aunque existen dos modelos para el cómputo de respuestas continuas, el modelo evolutivo y el de ventana deslizante; éste segundo se ajusta mejor en ciertas aplicaciones al considerar únicamente los datos recibidos más recientemente, en lugar de todo el histórico de datos. En los últimos años, la minería de datos en streaming se ha centrado en el modelo evolutivo. Mientras que, en el modelo de ventana deslizante, el trabajo presentado es más reducido ya que estos algoritmos no sólo deben de ser incrementales si no que deben borrar la información que caduca por el deslizamiento de la ventana manteniendo los anteriores tres desafíos. Una de las tareas fundamentales en minería de datos es la búsqueda de agrupaciones donde, dado un conjunto de datos, el objetivo es encontrar grupos representativos, de manera que se tenga una descripción sintética del conjunto. Estas agrupaciones son fundamentales en aplicaciones como la detección de intrusos en la red o la segmentación de clientes en el marketing y la publicidad. Debido a las cantidades masivas de datos que deben procesarse en este tipo de aplicaciones (millones de eventos por segundo), las soluciones centralizadas puede ser incapaz de hacer frente a las restricciones de tiempo de procesamiento, por lo que deben recurrir a descartar datos durante los picos de carga. Para evitar esta perdida de datos, se impone el procesamiento distribuido de streams, en concreto, los algoritmos de agrupamiento deben ser adaptados para este tipo de entornos, en los que los datos están distribuidos. En streaming, la investigación no solo se centra en el diseño para tareas generales, como la agrupación, sino también en la búsqueda de nuevos enfoques que se adapten mejor a escenarios particulares. Como ejemplo, un mecanismo de agrupación ad-hoc resulta ser más adecuado para la defensa contra la denegación de servicio distribuida (Distributed Denial of Services, DDoS) que el problema tradicional de k-medias. En esta tesis se pretende contribuir en el problema agrupamiento en streaming tanto en entornos centralizados y distribuidos. Hemos diseñado un algoritmo centralizado de clustering mostrando las capacidades para descubrir agrupaciones de alta calidad en bajo tiempo frente a otras soluciones del estado del arte, en una amplia evaluación. Además, se ha trabajado sobre una estructura que reduce notablemente el espacio de memoria necesario, controlando, en todo momento, el error de los cómputos. Nuestro trabajo también proporciona dos protocolos de distribución del cómputo de agrupaciones. Se han analizado dos características fundamentales: el impacto sobre la calidad del clustering al realizar el cómputo distribuido y las condiciones necesarias para la reducción del tiempo de procesamiento frente a la solución centralizada. Finalmente, hemos desarrollado un entorno para la detección de ataques DDoS basado en agrupaciones. En este último caso, se ha caracterizado el tipo de ataques detectados y se ha desarrollado una evaluación sobre la eficiencia y eficacia de la mitigación del impacto del ataque. ABSTRACT Advances in hardware allow to collect huge volumes of data emerging applications that must provide information in near-real time, e.g., patient monitoring, health monitoring of water pipes, etc. The data streaming model emerges to comply with these applications overcoming the traditional store-then-process model. With the store-then-process model, data is stored before being consulted; while, in streaming, data are processed on the fly producing continuous responses. The challenges of streaming for processing data on the fly are the following: 1) responses must be produced continuously whenever new data arrives in the system; 2) data is accessed only once and is generally not maintained in its entirety, and 3) data processing time to produce a response should be low. Two models exist to compute continuous responses: the evolving model and the sliding window model; the latter fits best with applications must be computed over the most recently data rather than all the previous data. In recent years, research in the context of data stream mining has focused mainly on the evolving model. In the sliding window model, the work presented is smaller since these algorithms must be incremental and they must delete the information which expires when the window slides. Clustering is one of the fundamental techniques of data mining and is used to analyze data sets in order to find representative groups that provide a concise description of the data being processed. Clustering is critical in applications such as network intrusion detection or customer segmentation in marketing and advertising. Due to the huge amount of data that must be processed by such applications (up to millions of events per second), centralized solutions are usually unable to cope with timing restrictions and recur to shedding techniques where data is discarded during load peaks. To avoid discarding of data, processing of streams (such as clustering) must be distributed and adapted to environments where information is distributed. In streaming, research does not only focus on designing for general tasks, such as clustering, but also in finding new approaches that fit bests with particular scenarios. As an example, an ad-hoc grouping mechanism turns out to be more adequate than k-means for defense against Distributed Denial of Service (DDoS). This thesis contributes to the data stream mining clustering technique both for centralized and distributed environments. We present a centralized clustering algorithm showing capabilities to discover clusters of high quality in low time and we provide a comparison with existing state of the art solutions. We have worked on a data structure that significantly reduces memory requirements while controlling the error of the clusters statistics. We also provide two distributed clustering protocols. We focus on the analysis of two key features: the impact on the clustering quality when computation is distributed and the requirements for reducing the processing time compared to the centralized solution. Finally, with respect to ad-hoc grouping techniques, we have developed a DDoS detection framework based on clustering.We have characterized the attacks detected and we have evaluated the efficiency and effectiveness of mitigating the attack impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rising water demands are difficult to meet in many regions of the world. In consequence, under meteorological adverse conditions, big economic losses in agriculture can take place. This paper aims to analyze the variability of water shortage in an irrigation district and the effect on farmer?s income. A probabilistic analysis of water availability for agriculture in the irrigation district is performed, through a supply-system simulation approach, considering stochastically generated series of stream-flows. Net margins associated to crop production are as well estimated depending on final water allocations. Net margins are calculated considering either single-crop farming, either a polyculture system. In a polyculture system, crop distribution and water redistribution are calculated through an optimization approach using the General Algebraic Modeling System (GAMS) for several scenarios of irrigation water availability. Expected net margins are obtained by crop and for the optimal crop and water distribution. The maximum expected margins are obtained for the optimal crop combination, followed by the alfalfa monoculture, maize, rice, wheat and finally barley. Water is distributed as follows, from biggest to smallest allocation: rice, alfalfa, maize, wheat and barley.