920 resultados para Strain Sensing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A steel frame is designed to measure the existing prestressing force in the concrete beams and slabs when embedded inside the concrete members. The steel frame is designed to work on the principles of a vibrating wire strain gauge and in the present study is referred to as a vibrating beam strain gauge (VBSG). The existing strain in the VBSG is evaluated using both frequency data on the stretched member and static strain corresponding to a fixed static load, measured using electrical strain gauges. The evaluated strain in the VBSG corresponds to the existing stain in the concrete surrounding the prestressing strands. The crack reopening load method is used to compute the existing prestressing force in the concrete members and is then compared with the existing prestressing force obtained from the VBSG at that section. Digital image correlation based surface deformation and change in neutral axis monitored by putting electrical strain gauges across the cross section, are used to compute the crack reopening load accurately. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Radio Frequency (RF) power on the properties of magnetron sputtered Al doped ZnO thin films and the related sensor properties are investigated. A series of 2 wt% Al doped ZnO; Zn0.98Al0.02O (AZO) thin films prepared with magnetron sputtering at different RF powers, are examined. The structural results reveal a good adhesive nature of thin films with quartz substrates as well as increasing thickness of the films with increasing RF power. Besides, the increasing RF power is found to improve the crystallinity and grain growth as confirmed by X-ray diffraction. On the other hand, the optical transmittance is significantly influenced by the RF power, where the transparency values achieved are higher than 82% for all the AZO thin films and the estimated optical band gap energy is found to decrease with RF power due to an increase in the crystallite size as well as the film thickness. In addition, the defect induced luminescence at low temperature (77 K) and room temperature (300 K) was studied through photoluminescence spectroscopy, it is found that the defect density of electronic states of the Al3+ ion increases with an increase of RF power due to the increase in the thickness of the film and the crystallite size. The gas sensing behavior of AZO films was studied for NO2 at 350 degrees C. The AZO film shows a good response towards NO2 gas and also a good relationship between the response and the NO2 concentration, which is modeled using an empirical formula. The sensing mechanism of NO2 is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ready-to-use screen printed glucose sensors are fabricated using Prussian Blue (PB) and Cobalt Phthalocyanine (CoPC) mediated carbon inks as working electrodes. The reference and counter electrodes are screen printed using silver/silver chloride and graphitic carbon paste respectively. The screen printed reference electrodes (internal reference electrode (IRE)) are found to be stable for more than 60 minutes when examined with saturated calomel electrode. Optimal operating voltage for PB and CoPC screen printed sensors are determined by hydrodynamic voltammetric technique. Glucose oxidase is immobilized on the working electrodes by cross-linking method. PB mediated glucose sensor exhibits a sensitivity of 5.60 mA cm(-2)/mM for the range, 10 to 1000 mu M. Sensitivity of CoPC mediated glucose sensor is found to be 5.224 mu A cm(-2)/mM and amperometeric response is linear for the range, 100 to 1500 mu M. Interference studies on the fabricated glucose sensors are conducted with species like uric acid and ascorbic acid. PB mediated sensors showed a completely interference-free behavior. The sensing characteristics of PB mediated glucose sensors are also studied in diluted human serum samples and the results are compared with the values obtained through standard clinical method. The co-efficient of variation is found to be less than 5%. (C) 2015 The Electrochemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of a molecule or group with an atom which is less electronegative than oxygen (0) and directly interacting with the surface is very relevant to development of PtM (M = 3d-transition metal) catalysts with high activity. Here, we present theoretical analysis of the adsorption of NH3 molecule (N being less electronegative than 0) on (111) surfaces of PtM (Fe, Co, Ni) alloys using the first principles density functional approach. We find that, while NH3-Pt interaction is stronger than that of NH3 with the elemental M-surfaces, it is weaker than the strength of interaction of NH3 with M-site on the surface of PtM alloy. (C) 2016 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a distributed sequential algorithm for quick detection of spectral holes in a Cognitive Radio set up. Two or more local nodes make decisions and inform the fusion centre (FC) over a reporting Multiple Access Channel (MAC), which then makes the final decision. The local nodes use energy detection and the FC uses mean detection in the presence of fading, heavy-tailed electromagnetic interference (EMI) and outliers. The statistics of the primary signal, channel gain and the EMI is not known. Different nonparametric sequential algorithms are compared to choose appropriate algorithms to be used at the local nodes and the Fe. Modification of a recently developed random walk test is selected for the local nodes for energy detection as well as at the fusion centre for mean detection. We show via simulations and analysis that the nonparametric distributed algorithm developed performs well in the presence of fading, EMI and outliers. The algorithm is iterative in nature making the computation and storage requirements minimal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the potential application of high dc voltage sensing using thin-film transistors (TFTs) on flexible substrates. High voltage sensing has potential applications for power transmission instrumentation. For this, we consider a gate metal-substrate-semiconductor architecture for TFTs. In this architecture, the flexible substrate not only provides mechanical support but also plays the role of the gate dielectric of the TFT. Hence, the thickness of the substrate needs to be optimized for maximizing transconductance, minimizing mechanical stress, and minimizing gate leakage currents. We discuss this optimization, and develop n-type and p-type organic TFTs using polyvinyldene fluoride as the substrate-gate insulator. Circuits are also realized to achieve level shifting, amplification, and high drain voltage operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three mechanisms operate during wear of materials. These mechanisms include the Strain Rate Response (SRR - effect of strain rate on plastic deformation), Tribo-Chemical Reactions (TCR) and formation of Mechanically Mixed Layers (MML). The present work investigates the effect of these three in context of the formation of MML. For this wear experiments are done on a pin-on-disc machine using Ti64 as the pin and SS316L as the disc. It is seen that apart from the speed and load, which control the SRR and TCR, the diameter of the pin controls the formation of MML, especially at higher speeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled variation of the electronic properties of. two-dimensional (2D) materials by applying strain has emerged as a promising way to design materials for customized applications. Using density functional theory (DFT) calculations, we show that while the electronic structure and indirect band gap of SnS2 do not change significantly with the number of layers, they can be reversibly tuned by applying biaxial tensile (BT), biaxial compressive (BC), and normal compressive (NC) strains. Mono to multilayered SnS2 exhibit a reversible semiconductor to metal (S-M) transition with applied strain. For bilayer (2L) SnS2, the S-Mtransition occurs at the strain values of 17%,-26%, and -24% under BT, BC, and NC strains, respectively. Due to weaker interlayer coupling, the critical strain value required to achieve the S-Mtransition in SnS2 under NC strain is much higher than for MoS2. From a stability viewpoint, SnS2 becomes unstable at very low strain values on applying BC (-6.5%) and BT strains (4.9%), while it is stable even up to the transition point (-24%) in the case of NC strain. In addition to the reversible tuning of the electronic properties of SnS2, we also show tunability in the phononic band gap of SnS2, which increases with applied NC strain. This gap increases three times faster than for MoS2. This simultaneous tunability of SnS2 at the electronic and phononic levels with strain, makes it a potential candidate in field effect transistors (FETs) and sensors as well as frequency filter applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alpha-titanium and its alloys with a dual-phase structure (alpha+beta) were deformed dynamically under strain rate of about 10(4) s(-1). The formation and microstructural evolution of the localized shear bands were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that both the strain and strain rate should be considered simultaneously as the mechanical conditions for shear band formation, and twinning is an important mode of deformation. Both experimental and calculation show that the materials within the bands underwent a superhigh strain rate (9 x 10(5) s(-1)) deformation, which is two magnitudes of that of average strain rate required for shear band formation; the dislocations in the bands can be constricted and developed into cell structures; the phase transformation from alpha to alpha(2) within the bands was observed, and the transformation products (alpha(2)) had a certain crystallographic orientation relationship with their parent; the equiaxed grains with an average size of 10 mu m in diameter observed within the bands are proposed to be the results of recrystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the 'average stress in the matrix' concept of Mori and Tanaka (:Mori, T., Tanaka, K., 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusion. Acta Metall. 21, 571-580) a micromechanical model is presented for the prediction of the elastic fields in coated inclusion composites with imperfect interfaces. The solutions of the effective elastic moduli for this kind of composite are also obtained. In two kinds of composites with coated particulates and fibers, respectively, the interface imperfections are takes to the assumption that the interface displacement discontinues are linearly related to interface tractions like a spring layer of vanishing thickness. The resulting effective shear modulus for each material and the stress fields in the composite are presented under a transverse shear loading situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

对薄板成形应变场传统的测量方法进行了研究,指出了其不足和误差的来源,提出了数字图像分析法测量薄板成形中的应变场,对测量原理、新的测量方法对传统方法的改进,以及如何降低误差进行了介绍,指出数字图像分析法的前景,提出了改进意见。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many experimental observations have clearly shown that dislocation interaction plays a crucial role in the kinetics of strain relaxation in epitaxial thin films. A set of evolution equations are presented in this article. The key feature of the equations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applying the scaling relationships developed recently for conical indentation in elastic-plastic solids with work-hardening, we examine the question of whether stress-strain relationships of such solids can be uniquely determined by matching the calculated loading and unloading curves with that measured experimentally. We show that there can be multiple stress-strain curves for a given set of loading and unloading curves. Consequently, stress-strain relationships may not be uniquely determined from loading and unloading curves alone using a conical or pyramidal indenter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since hydration forces become very strong at short range and are particularly important for determining the magnitude of the adhesion between two surfaces or interaction energy, the influences of the hydration force and elastic strain energy due to hydration-induced layering of liquid molecules close to a solid film surface on the stability of a solid film in a solid-on-liquid (SOL) nanostructure are studied in this paper. The liquid of this thin SOL structure is a kind of water solution. Since the surface forces play an important role in the structure, the total free energy change of SOL structures consists of the changes in the bulk elastic energy within the solid film, the surface energy at the solid-liquid interface and the solid-air interface, and highly nonlinear volumetric component associated with interfacial forces. The critical wavelength of one-dimensional undulation, the critical thickness of the solid film, and the critical thickness of the liquid layer are studied, and the stability regions of the solid film have been determined. Emphasis is placed on calculation of critical values, which are the basis of analyzing the stability of the very thin solid film.