994 resultados para Stochastic Matrix


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the classic Merton (1969, 1971) problem that investigates the joint consumption-savings and portfolio-selection problem under capital risk by assuming sophisticated but time-inconsistent agents. We introduce stochastic hyperbolic preferences as in Harris and Laibson (2013) and find closed-form solutions for Merton's optimal consumption and portfolio selection problem in continuous time. We find that the portfolio rule remains identical to the time-consistent solution with power utility and no borrowing constraints. However,the marginal propensity to consume out of wealth is unambiguously greater than the time-consistent, exponential case and,importantly, it is also more responsive to changes in risk. These results suggest that hyperbolic discounting with sophisticated agents offers promise for contributing to explaining important aspects of asset market data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes have unprecedented mechanical properties as defect-free nanoscale building blocks, but their potential has not been fully realized in composite materials due to weakness at the interfaces. Here we demonstrate that through load-transfer-favored three-dimensional architecture and molecular level couplings with polymer chains, true potential of CNTs can be realized in composites as Initially envisioned. Composite fibers with reticulate nanotube architectures show order of magnitude improvement in strength compared to randomly dispersed short CNT reinforced composites reported before. The molecular level couplings between nanotubes and polymer chains results in drastic differences in the properties of thermoset and thermoplastic composite fibers, which indicate that conventional macroscopic composite theory falls to explain the overall hybrid behavior at nanoscale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, multi-hole cooling is studied for an oxide/oxide ceramic specimen with normal injection holes and for a SiC/SiC ceramic specimen with oblique injection holes. A special purpose heat transfer tunnel was designed and built, which can provide a wide range of Reynolds numbers (10(5)similar to 10(7)) and a large temperature ratio of the primary flow to the coolant (up to 2.5). Cooling effectiveness determined by the measured surface temperature for the two types of ceramic specimens is investigated. It is found that the multi-hole cooling system for both specimens has a high cooling efficiency and it is higher for the SiC/SiC specimen than for the oxide/oxide specimen. Effects on the cooling effectiveness of parameters including blowing ratio, Reynolds number and temperature ratio, are studied. In addition, profiles of the mean velocity and temperature above the cooling surface are measured to provide further understanding of the cooling process. Duplication of the key parameters for multi-hole cooling, for a representative combustor flow condition (without radiation effects), is achieved with parameter scaling and the results show the high efficiency of multi-hole cooling for the oblique hole, SiC/SiC specimen. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zr-based bulk metallic glass matrix composites with the composition of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.(5) were synthesized by the copper-mould suction casting and the Bridgman solidification. The composite, containing a well-developed flowery beta-Zr dendritic phase, was obtained by the Bridgman solidification with the withdrawal velocity of 0.8 mm/s and the temperature gradient of 45 K/mm, and the ultimate strength of 2050 MPa and fracture plastic strain of 14.6% of the composite were achieved, which was mainly interpreted by the homogeneous dispersion of bcc beta-Zr phase in the glass matrix. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of "exit against a flow" for dynamical systems subject to small Gaussian white noise excitation is studied. Here the word "flow" refers to the behavior in phase space of the unperturbed system's state variables. "Exit against a flow" occurs if a perturbation causes the phase point to leave a phase space region within which it would normally be confined. In particular, there are two components of the problem of exit against a flow:

i) the mean exit time

ii) the phase-space distribution of exit locations.

When the noise perturbing the dynamical systems is small, the solution of each component of the problem of exit against a flow is, in general, the solution of a singularly perturbed, degenerate elliptic-parabolic boundary value problem.

Singular perturbation techniques are used to express the asymptotic solution in terms of an unknown parameter. The unknown parameter is determined using the solution of the adjoint boundary value problem.

The problem of exit against a flow for several dynamical systems of physical interest is considered, and the mean exit times and distributions of exit positions are calculated. The systems are then simulated numerically, using Monte Carlo techniques, in order to determine the validity of the asymptotic solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theory of two-point boundary value problems analogous to the theory of initial value problems for stochastic ordinary differential equations whose solutions form Markov processes is developed. The theory of initial value problems consists of three main parts: the proof that the solution process is markovian and diffusive; the construction of the Kolmogorov or Fokker-Planck equation of the process; and the proof that the transistion probability density of the process is a unique solution of the Fokker-Planck equation.

It is assumed here that the stochastic differential equation under consideration has, as an initial value problem, a diffusive markovian solution process. When a given boundary value problem for this stochastic equation almost surely has unique solutions, we show that the solution process of the boundary value problem is also a diffusive Markov process. Since a boundary value problem, unlike an initial value problem, has no preferred direction for the parameter set, we find that there are two Fokker-Planck equations, one for each direction. It is shown that the density of the solution process of the boundary value problem is the unique simultaneous solution of this pair of Fokker-Planck equations.

This theory is then applied to the problem of a vibrating string with stochastic density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal processing techniques play important roles in the design of digital communication systems. These include information manipulation, transmitter signal processing, channel estimation, channel equalization and receiver signal processing. By interacting with communication theory and system implementing technologies, signal processing specialists develop efficient schemes for various communication problems by wisely exploiting various mathematical tools such as analysis, probability theory, matrix theory, optimization theory, and many others. In recent years, researchers realized that multiple-input multiple-output (MIMO) channel models are applicable to a wide range of different physical communications channels. Using the elegant matrix-vector notations, many MIMO transceiver (including the precoder and equalizer) design problems can be solved by matrix and optimization theory. Furthermore, the researchers showed that the majorization theory and matrix decompositions, such as singular value decomposition (SVD), geometric mean decomposition (GMD) and generalized triangular decomposition (GTD), provide unified frameworks for solving many of the point-to-point MIMO transceiver design problems.

In this thesis, we consider the transceiver design problems for linear time invariant (LTI) flat MIMO channels, linear time-varying narrowband MIMO channels, flat MIMO broadcast channels, and doubly selective scalar channels. Additionally, the channel estimation problem is also considered. The main contributions of this dissertation are the development of new matrix decompositions, and the uses of the matrix decompositions and majorization theory toward the practical transmit-receive scheme designs for transceiver optimization problems. Elegant solutions are obtained, novel transceiver structures are developed, ingenious algorithms are proposed, and performance analyses are derived.

The first part of the thesis focuses on transceiver design with LTI flat MIMO channels. We propose a novel matrix decomposition which decomposes a complex matrix as a product of several sets of semi-unitary matrices and upper triangular matrices in an iterative manner. The complexity of the new decomposition, generalized geometric mean decomposition (GGMD), is always less than or equal to that of geometric mean decomposition (GMD). The optimal GGMD parameters which yield the minimal complexity are derived. Based on the channel state information (CSI) at both the transmitter (CSIT) and receiver (CSIR), GGMD is used to design a butterfly structured decision feedback equalizer (DFE) MIMO transceiver which achieves the minimum average mean square error (MSE) under the total transmit power constraint. A novel iterative receiving detection algorithm for the specific receiver is also proposed. For the application to cyclic prefix (CP) systems in which the SVD of the equivalent channel matrix can be easily computed, the proposed GGMD transceiver has K/log_2(K) times complexity advantage over the GMD transceiver, where K is the number of data symbols per data block and is a power of 2. The performance analysis shows that the GGMD DFE transceiver can convert a MIMO channel into a set of parallel subchannels with the same bias and signal to interference plus noise ratios (SINRs). Hence, the average bit rate error (BER) is automatically minimized without the need for bit allocation. Moreover, the proposed transceiver can achieve the channel capacity simply by applying independent scalar Gaussian codes of the same rate at subchannels.

In the second part of the thesis, we focus on MIMO transceiver design for slowly time-varying MIMO channels with zero-forcing or MMSE criterion. Even though the GGMD/GMD DFE transceivers work for slowly time-varying MIMO channels by exploiting the instantaneous CSI at both ends, their performance is by no means optimal since the temporal diversity of the time-varying channels is not exploited. Based on the GTD, we develop space-time GTD (ST-GTD) for the decomposition of linear time-varying flat MIMO channels. Under the assumption that CSIT, CSIR and channel prediction are available, by using the proposed ST-GTD, we develop space-time geometric mean decomposition (ST-GMD) DFE transceivers under the zero-forcing or MMSE criterion. Under perfect channel prediction, the new system minimizes both the average MSE at the detector in each space-time (ST) block (which consists of several coherence blocks), and the average per ST-block BER in the moderate high SNR region. Moreover, the ST-GMD DFE transceiver designed under an MMSE criterion maximizes Gaussian mutual information over the equivalent channel seen by each ST-block. In general, the newly proposed transceivers perform better than the GGMD-based systems since the super-imposed temporal precoder is able to exploit the temporal diversity of time-varying channels. For practical applications, a novel ST-GTD based system which does not require channel prediction but shares the same asymptotic BER performance with the ST-GMD DFE transceiver is also proposed.

The third part of the thesis considers two quality of service (QoS) transceiver design problems for flat MIMO broadcast channels. The first one is the power minimization problem (min-power) with a total bitrate constraint and per-stream BER constraints. The second problem is the rate maximization problem (max-rate) with a total transmit power constraint and per-stream BER constraints. Exploiting a particular class of joint triangularization (JT), we are able to jointly optimize the bit allocation and the broadcast DFE transceiver for the min-power and max-rate problems. The resulting optimal designs are called the minimum power JT broadcast DFE transceiver (MPJT) and maximum rate JT broadcast DFE transceiver (MRJT), respectively. In addition to the optimal designs, two suboptimal designs based on QR decomposition are proposed. They are realizable for arbitrary number of users.

Finally, we investigate the design of a discrete Fourier transform (DFT) modulated filterbank transceiver (DFT-FBT) with LTV scalar channels. For both cases with known LTV channels and unknown wide sense stationary uncorrelated scattering (WSSUS) statistical channels, we show how to optimize the transmitting and receiving prototypes of a DFT-FBT such that the SINR at the receiver is maximized. Also, a novel pilot-aided subspace channel estimation algorithm is proposed for the orthogonal frequency division multiplexing (OFDM) systems with quasi-stationary multi-path Rayleigh fading channels. Using the concept of a difference co-array, the new technique can construct M^2 co-pilots from M physical pilot tones with alternating pilot placement. Subspace methods, such as MUSIC and ESPRIT, can be used to estimate the multipath delays and the number of identifiable paths is up to O(M^2), theoretically. With the delay information, a MMSE estimator for frequency response is derived. It is shown through simulations that the proposed method outperforms the conventional subspace channel estimator when the number of multipaths is greater than or equal to the number of physical pilots minus one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a simplified state-variable method to solve for the nonstationary response of linear MDOF systems subjected to a modulated stationary excitation in both time and frequency domains. The resulting covariance matrix and evolutionary spectral density matrix of the response may be expressed as a product of a constant system matrix and a time-dependent matrix, the latter can be explicitly evaluated for most envelopes currently prevailing in engineering. The stationary correlation matrix of the response may be found by taking the limit of the covariance response when a unit step envelope is used. The reliability analysis can then be performed based on the first two moments of the response obtained.

The method presented facilitates obtaining explicit solutions for general linear MDOF systems and is flexible enough to be applied to different stochastic models of excitation such as the stationary models, modulated stationary models, filtered stationary models, and filtered modulated stationary models and their stochastic equivalents including the random pulse train model, filtered shot noise, and some ARMA models in earthquake engineering. This approach may also be readily incorporated into finite element codes for random vibration analysis of linear structures.

A set of explicit solutions for the response of simple linear structures subjected to modulated white noise earthquake models with four different envelopes are presented as illustration. In addition, the method has been applied to three selected topics of interest in earthquake engineering, namely, nonstationary analysis of primary-secondary systems with classical or nonclassical dampings, soil layer response and related structural reliability analysis, and the effect of the vertical components on seismic performance of structures. For all the three cases, explicit solutions are obtained, dynamic characteristics of structures are investigated, and some suggestions are given for aseismic design of structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.

For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.

For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.

For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.