935 resultados para Steam reforming of methanol


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The three-stage low-pressure model steam turbine at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) was used to study the impact of three different steam inlet temperatures on the homogeneous condensation process and the resulting wetness topology. The droplet spectrum as well as the particle number concentration were measured in front of the last stage using an optical-pneumatic probe. At design load, condensation starts inside the stator of the second stage. A change in the steam inlet temperature is able to shift the location of condensation onset within the blade row up- or downstream and even into adjoining blade passages, which leads to significantly different local droplet sizes and wetness fractions due to different local expansion rates. The measured results are compared to steady three-dimensional computational fluid dynamics calculations. The predicted nucleation zones could be largely confirmed by the measurements. Although the trend of measured and calculated droplet size across the span is satisfactory, there are considerable differences between the measured and computed droplet spectrum and wetness fractions. © IMechE 2013 Reprints and permissions: sagepub.co.uk/ journalsPermissions.nav.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ZnO thin films were grown by metal-organic chemical vapour deposition using methanol as oxidant. Rapid thermal annealing (RTA) was performed in an ambient of one atmosphere oxygen at 900 degrees C for 60 s. The RTA properties of the films have been characterized using scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, photoluminescence spectra and Hall measurement. The grains of the film were well coalesced and the surface became denser after RTA. The full-width at half maximum of rocking curves was only 496 arcsec. The ZnO films were also proved to have good optical quality. The Hall mobility increased to 43.2 cm(2) V-1 s(-1) while the electron concentration decreased to 6.6 x 10(16) cm(-3). It is found that methanol is a potential oxidant for ZnO growth and the quality of ZnO film can be improved substantially through RTA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monodispersed ZnS and Eu3+-doped ZnS nanocrystals have been prepared through the co-precipitation reaction of inorganic precursors ZnCl2, EuCl3, and Na2S in a water/methanol binary solution. The mean particle sizes are about 3-5 nm. The structures of the as-prepared ZnS nanoparticles are cubic (zinc blende) as demonstrated by an x-ray powder diffraction. Photoluminescence studies showed a stable room temperature emission in the visible spectrum region for all the samples, with a broadening in the emission band and, in particular, a partially overlapped twin peak in the Eu3+-doped ZnS nanocrystals. The experimental results also indicated that Eu3+-doped ZnS nanocrystals, prepared by controlling synthetic conditions, were stable. (C) 2002 American Institute of Physics.