959 resultados para Statistical parameters
Resumo:
In the present work, a numerical study is performed to predict the effect of process parameters on transport phenomena during solidification of aluminium alloy A356 in the presence of electromagnetic stirring. A set of single-phase governing equations of mass, momentum, energy and species conservation is used to represent the solidification process and the associated fluid flow, heat and mass transfer. In the model, the electromagnetic forces are incorporated using an analytical solution of Maxwell equation in the momentum conservation equations and the slurry rheology during solidification is represented using an experimentally determined variable viscosity function. Finally, the set of governing equations is solved for various process conditions using a pressure based finite volume technique, along with an enthalpy based phase change algorithm. In present work, the effect of stirring intensity and cooling rate are considered. It is found that increasing stirring intensity results in increase of slurry velocity and corresponding increase in the fraction of solid in the slurry. In addition, the increasing stirring intensity results uniform distribution of species and fraction of solid in the slurry. It is also found from the simulation that the distribution of solid fraction and species is dependent on cooling rate conditions. At low cooling rate, the fragmentation of dendrites from the solid/liquid interface is more.
Resumo:
Water quality data are often collected at different sites over time to improve water quality management. Water quality data usually exhibit the following characteristics: non-normal distribution, presence of outliers, missing values, values below detection limits (censored), and serial dependence. It is essential to apply appropriate statistical methodology when analyzing water quality data to draw valid conclusions and hence provide useful advice in water management. In this chapter, we will provide and demonstrate various statistical tools for analyzing such water quality data, and will also introduce how to use a statistical software R to analyze water quality data by various statistical methods. A dataset collected from the Susquehanna River Basin will be used to demonstrate various statistical methods provided in this chapter. The dataset can be downloaded from website http://www.srbc.net/programs/CBP/nutrientprogram.htm.
Resumo:
Assembly consisting of cast and wrought aluminum alloys has wide spread application in defense and aero space industries. For the efficacious use of the transition joints, the weld should have adequate strength and formability. In the present investigation, A356 and 6061 aluminum alloys were friction stir welded under tool rotational speed of 1000-1400 rpm and traversing speed of 80-240 mm/min, keeping other parameters same. The variable process window is responsible for the change in total heat input and cooling rate during welding. Structural characterization of the bonded assemblies exhibits recovery-recrystallization in the stirring zone and breaking of coarse eutectic network of Al-Si. Dispersion of fine Si rich particles, refinement of 6061 grain size, low residual stress level and high defect density within weld nugget contribute towards the improvement in bond strength. Lower will be the tool rotational and traversing speed, more dominant will be the above phenomena. Therefore, the joint fabricated using lowest tool traversing and rotational speed, exhibits substantial improvement in bond strength (similar to 98% of that of 6061 alloy), which is also maximum with respect to others. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Knowledge of the physical properties of asteroids is crucial in many branches of solar-system research. Knowledge of the spin states and shapes is needed, e.g., for accurate orbit determination and to study the history and evolution of the asteroids. In my thesis, I present new methods for using photometric lightcurves of asteroids in the determination of their spin states and shapes. The convex inversion method makes use of a general polyhedron shape model and provides us at best with an unambiguous spin solution and a convex shape solution that reproduces the main features of the original shape. Deriving information about the non-convex shape features is, in principle, also possible, but usually requires a priori information about the object. Alternatively, a distribution of non-convex solutions, describing the scale of the non-convexities, is also possible to be obtained. Due to insufficient number of absolute observations and inaccurately defined asteroid phase curves, the $c/b$-ratio, i.e., the flatness of the shape model is often somewhat ill-defined. However, especially in the case of elongated objects, the flatness seems to be quite well constrained, even in the case when only relative lightcurves are available. The results prove that it is, contrary to the earlier misbelief, possible to derive shape information from the lightcurve data if a sufficiently wide range of observing geometries is covered by the observations. Along with the more accurate shape models, also the rotational states, i.e., spin vectors and rotation periods, are defined with improved accuracy. The shape solutions obtained so far reveal a population of irregular objects whose most descriptive shape characteristics, however, can be expressed with only a few parameters. Preliminary statistical analyses for the shapes suggests that there are correlations between shape and other physical properties, such as the size, rotation period and taxonomic type of the asteroids. More shape data of, especially, the smallest and largest asteroids, as well as the fast and slow rotators is called for in order to be able to study the statistics more thoroughly.
Resumo:
This paper describes a concept for a collision avoidance system for ships, which is based on model predictive control. A finite set of alternative control behaviors are generated by varying two parameters: offsets to the guidance course angle commanded to the autopilot and changes to the propulsion command ranging from nominal speed to full reverse. Using simulated predictions of the trajectories of the obstacles and ship, compliance with the Convention on the International Regulations for Preventing Collisions at Sea and collision hazards associated with each of the alternative control behaviors are evaluated on a finite prediction horizon, and the optimal control behavior is selected. Robustness to sensing error, predicted obstacle behavior, and environmental conditions can be ensured by evaluating multiple scenarios for each control behavior. The method is conceptually and computationally simple and yet quite versatile as it can account for the dynamics of the ship, the dynamics of the steering and propulsion system, forces due to wind and ocean current, and any number of obstacles. Simulations show that the method is effective and can manage complex scenarios with multiple dynamic obstacles and uncertainty associated with sensors and predictions.
Resumo:
A better performing product code vector quantization (VQ) method is proposed for coding the line spectrum frequency (LSF) parameters; the method is referred to as sequential split vector quantization (SeSVQ). The split sub-vectors of the full LSF vector are quantized in sequence and thus uses conditional distribution derived from the previous quantized sub-vectors. Unlike the traditional split vector quantization (SVQ) method, SeSVQ exploits the inter sub-vector correlation and thus provides improved rate-distortion performance, but at the expense of higher memory. We investigate the quantization performance of SeSVQ over traditional SVQ and transform domain split VQ (TrSVQ) methods. Compared to SVQ, SeSVQ saves 1 bit and nearly 3 bits, for telephone-band and wide-band speech coding applications respectively.
Resumo:
A central composite rotatable experimental design was constructed for a statistical study of the ethylation of benzene in the liquid phase, with aluminum chloride catalyst, in an agitated tank system. The conversion of benzene and ethylene and the yield of monoethyl- and diethylbenzene are characterized by the response surface technique. In the experimental range studied, agitation rate has no significant effect. Catalyst concentration, rate of ethylene Flow, and temperature are the influential factors. The response surfaces may be adequately approximated by planes.
Resumo:
Two algorithms are outlined, each of which has interesting features for modeling of spatial variability of rock depth. In this paper, reduced level of rock at Bangalore, India, is arrived from the 652 boreholes data in the area covering 220 sqa <.km. Support vector machine (SVM) and relevance vector machine (RVM) have been utilized to predict the reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth. The support vector machine (SVM) that is firmly based on the theory of statistical learning theory uses regression technique by introducing epsilon-insensitive loss function has been adopted. RVM is a probabilistic model similar to the widespread SVM, but where the training takes place in a Bayesian framework. Prediction results show the ability of learning machine to build accurate models for spatial variability of rock depth with strong predictive capabilities. The paper also highlights the capability ofRVM over the SVM model.
Resumo:
It is well known that the analysis of vibration of orthogonally stiffened rectangular plates and grillages may be simplified by replacing the actual structure by an orthotropic plate. This needs a suitable determination of the four elastic rigidity constants Dx, Dy, Dxy, D1 and the mass {Mathematical expression} of the orthotropic plate. A method is developed here for determining these parameters in terms of the sectional properties of the original plate-stiffener combination or the system of interconnected beams. Results of experimental work conducted on aluminium plates agree well with the results of the theory developed here.
Resumo:
The variations in certain spin-Hamiltonian parameters of the Cu++ ion in dibarium copper formate tetrahydrate with temperature have been studied. Optical absorption investigations on single crystals of the salt at room temperature and 90° K. are reported. The results are discussed in terms of a model in which vibronic mixing of certain electron levels of the Cu++ ion play an important role.
Resumo:
Statistical learning algorithms provide a viable framework for geotechnical engineering modeling. This paper describes two statistical learning algorithms applied for site characterization modeling based on standard penetration test (SPT) data. More than 2700 field SPT values (N) have been collected from 766 boreholes spread over an area of 220 sqkm area in Bangalore. To get N corrected value (N,), N values have been corrected (Ne) for different parameters such as overburden stress, size of borehole, type of sampler, length of connecting rod, etc. In three-dimensional site characterization model, the function N-c=N-c (X, Y, Z), where X, Y and Z are the coordinates of a point corresponding to N, value, is to be approximated in which N, value at any half-space point in Bangalore can be determined. The first algorithm uses least-square support vector machine (LSSVM), which is related to aridge regression type of support vector machine. The second algorithm uses relevance vector machine (RVM), which combines the strengths of kernel-based methods and Bayesian theory to establish the relationships between a set of input vectors and a desired output. The paper also presents the comparative study between the developed LSSVM and RVM model for site characterization. Copyright (C) 2009 John Wiley & Sons,Ltd.