977 resultados para Static Vehicle Tests.
Resumo:
The nature of the transport system contributes to public health outcomes in a range of ways. The clearest contribution to public health is in the area of traffic crashes, because of their direct impact on individual death and disability and their direct costs to the health system. Other papers in this conference address these issues. This paper outlines some collaborative research between the Centre for Accident Research and Road Safety - Queensland (CARRS-Q) at QUT and Chinese researchers in areas that have indirect health impacts. Heavy vehicle dynamics: The integrity of the road surface influences crash risk, with ruts, pot-holes and other forms of road damage contributing to increased crash risks. The great majority of damage to the road surface from vehicles is caused by heavy trucks and buses, rather than cars or smaller vehicles. In some cases this damage is due to deliberate overloading, but in other cases it is due to vehicle suspension characteristics that lead to occasional high loads on particular wheels. Together with a visiting researcher and his colleagues, we have used both Queensland and Chinese data to model vehicle suspension systems that reduce the level of load, and hence the level of road damage and resulting crash risk(1-5). Toll worker exposure to vehicle emissions: The increasing construction of highways in China has also involved construction of a large number of toll roads. Tollbooth workers are potentially exposed to high levels of pollutants from vehicles, however the extent of this exposure and how it relates to standards for exposure are not well known. In a study led by a visiting researcher, we conducted a study to model these levels of exposure for a tollbooth in China(6). Noise pollution: The increasing presence of high speed roads in China has contributed to an increase in noise levels. In this collaborative study we modelled noise levels associated with a freeway widening near a university campus, and measures to reduce the noise(7). Along with these areas of research, there are many other areas of transport with health implications that are worthy of exploration. Traffic, noise and pollution contribute to a difficult environment for pedestrians, especially in an ageing society where there are health benefits to increasing physical activity. By building on collaborations such as those outlined, there is potential for a contribution to improved public health by addressing transport issues such as vehicle factors and pollution, and extending the research to other areas of travel activity. 1. Chen, Y., He, J., King, M., Chen, W. and Zhang, W. (2014). Stiffness-damping matching method of an ECAS system based on LQG control. Journal of Central South University, 21:439-446. DOI: 10.1007/s1177101419579 2. Chen, Y., He, J., King, M., Feng, Z. and Chang, W. (2013). Comparison of two suspension control strategies for multi-axle heavy truck. Journal of Central South University, 20(2): 550-562. 3. Chen, Y., He, J., King, M., Chen, W. and Zhang, W. (2013). Effect of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions. Science China Technological Sciences, 56(3): 666-676. DOI: 10.1007/s11431-012-5091-3 4. Chen, Y., He., J., King, M., Chen, W. and Zhang, W. (2013). Model development and dynamic load-sharing analysis of longitudinal-connected air suspensions. Strojniški Vestnik - Journal of Mechanical Engineering, 59(1):14-24. 5. Chen, Y., He, J., King, M., Liu, H. and Zhang, W. (2013). Dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. Proceedings of Transportation Research Board Annual Conference, Washington DC, 13-17 January 2013, paper no. 13-1117. 6. He, J., Qi, Z., Hang, W., King, M., and Zhao, C. (2011). Numerical evaluation of pollutant dispersion at a toll plaza based on system dynamics and Computational Fluid Dynamics models. Transportation Research Part C, 19(2011):510-520. 7. Zhang, C., He, J., Wang, Z., Yin, R. and King, M. (2013). Assessment of traffic noise level before and after freeway widening using traffic microsimulation and a refined classic noise prediction method. Proceedings of Transportation Research Board Annual Conference, Washington DC, 13-17 January 2013, paper no. 13-2016.
Resumo:
Purposes: The first objective was to propose a new model representing the balance level of adults with intellectual and developmental disabilities (IDD) using Principal Components Analysis (PCA); and the second objective was to use the results from the PCA recorded by regression method to construct and validate summative scales of the standardized values of the index, which may be useful to facilitate a balance assessment in adults with IDD. Methods: A total of 801 individuals with IDD (509 males) mean 33.1±8.5 years old, were recruited from Special Olympic Games in Spain 2009 to 2012. The participants performed the following tests: the timed-stand test, the single leg stance test with open and closed eyes, the Functional Reach Test, the Expanded Timed-Get-up-and-Go Test. Data was analyzed using principal components analysis (PCA) with Oblimin rotation and Kaiser normalization. We examined the construct validity of our proposed two-factor model underlying balance for adults with IDD. The scores from PCA were recorded by regression method and were standardized. Results: The Component Plot and Rotated Space indicated that a two-factor solution (Dynamic and Static Balance components) was optimal. The PCA with direct Oblimin rotation revealed a satisfactory percentage of total variance explained by the two factors: 51.6 and 21.4%, respectively. The median score standardized for component dynamic and static of the balance index for adults with IDD is shown how references values. Conclusions: Our study may lead to improvements in the understanding and assessment of balance in adults with IDD. First, it confirms that a two-factor model may underlie the balance construct, and second, it provides an index that may be useful for identifying the balance level for adults with IDD.
Resumo:
Accurate modelling of automotive occupant posture is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The thigh-buttock surface shell model was based on 95th percentile male subject scan data and made of two layers, covering thin to moderate thigh and buttock proportions. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour. The analytical seat model is based on a Ford production seat. The result of the finite-element indentation simulation is compared to a previous simulation of an indentation with a hard shell human model of equal geometry, and to the physical indentation result. We conclude that SAE composite buttock form and human-seat indentation of a suspended seat cushion can be validly simulated.
Resumo:
During high wind events, crest-fixed profiled steel roof claddings in low-rise buildings can be subjected to combined cyclic wind uplift and in-plane racking (shear) forces. Static and cyclic tests of corrugated steel roof claddings were carried out to investigate the effect of in-plane racking force on the uplift strength, in particular, in relation to the fatigue cracking commonly observed under cyclic wind uplift. The presence of racking force appeared to have insignificant effect on the static and cyclic wind uplift strength. It may therefore be possible to include the diaphragm strength of these claddings in the design of low-rise buildings in a similar manner to valley-fixed claddings. This may lead to a reduction in bracing requirements.
Resumo:
Traffic crashes are the leading cause of death and injury among children aged between 4-14 years1,2 and premature graduation to adult seat belts2,3 and restraint misuse4 are common and known risk factors. Children are believed to prematurely graduate to adult belts and misuse the seat belt in booster seats if uncomfortable2,5,6. Although research has concentrated on educating parents and designing better restraints to reduce errors in use, comfort of the child in the restraint has not been studied. Currently there is no existing method for studying comfort in children in restraint systems, although self-report survey tools and pressure distribution mapping is commonly used to measure comfort among adult in vehicle seats. This poster presents preliminary results from work aimed at developing an appropriate method to measure comfort of children in vehicle restraint systems. The specific aims are to: 1. Examine the potential of using modified adult self-report/survey and pressure distribution mapping in children 2. Develop a video based, objective measure of comfort in children.
Resumo:
This paper overviews the development of a vision-based AUV along with a set of complementary operational strategies to allow reliable autonomous data collection in relatively shallow water and coral reef environments. The development of the AUV, called Starbug, encountered many challenges in terms of vehicle design, navigation and control. Some of these challenges are discussed with focus on operational strategies for estimating and reducing the total navigation error when using lower-resolution sensing modalities. Results are presented from recent field trials which illustrate the ability of the vehicle and associated operational strategies to enable rapid collection of visual data sets suitable for marine research applications.
Resumo:
This paper describes the development and experimental evaluation of a novel vision-based Autonomous Surface Vehicle with the purpose of performing coordinated docking manoeuvres with a target, such as an Autonomous Underwater Vehicle, on the water’s surface. The system architecture integrates two small processor units; the first performs vehicle control and implements a virtual force obstacle avoidance and docking strategy, with the second performing vision-based target segmentation and tracking. Furthermore, the architecture utilises wireless sensor network technology allowing the vehicle to be observed by, and even integrated within an ad-hoc sensor network. The system performance is demonstrated through real-world experiments.
Resumo:
Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.
Resumo:
Hot metal carriers (HMCs) are large forklift-type vehicles used to move molten metal in aluminum smelters. This paper reports on field experiments that demonstrate that HMCs can operate autonomously and in particular can use vision as a primary sensor to locate the load of aluminum. We present our complete system but focus on the vision system elements and also detail experiments demonstrating reliable operation of the materials handling task. Two key experiments are described, lasting 2 and 5 h, in which the HMC traveled 15 km in total and handled the load 80 times.
Resumo:
A coverage algorithm is an algorithm that deploys a strategy as to how to cover all points in terms of a given area using some set of sensors. In the past decades a lot of research has gone into development of coverage algorithms. Initially, the focus was coverage of structured and semi-structured indoor areas, but with time and development of better sensors and introduction of GPS, the focus has turned to outdoor coverage. Due to the unstructured nature of an outdoor environment, covering an outdoor area with all its obstacles and simultaneously performing reliable localization is a difficult task. In this paper, two path planning algorithms suitable for solving outdoor coverage tasks are introduced. The algorithms take into account the kinematic constraints of an under-actuated car-like vehicle, minimize trajectory curvatures, and dynamically avoid detected obstacles in the vicinity, all in real-time. We demonstrate the performance of the coverage algorithm in the field by achieving 95% coverage using an autonomous tractor mower without the aid of any absolute localization system or constraints on the physical boundaries of the area.
Resumo:
This paper describes a lightweight, modular and energy efficient robotic vehicle platform designed for broadacre agriculture - the Small Robotic Farm Vehicle (SRFV). The current trend in farming is towards increasingly large machines that optimise the individual farmer’s productivity. Instead, the SRFV is designed to promote the sustainable intensification of agriculture by allowing farmers to concentrate on more important farm management tasks. The robot has been designed with a user-centred approach which focuses the outcomes of the project on the needs of the key project stakeholders. In this way user and environmental considerations for broadacre farming have informed the vehicle platform configuration, locomotion, power requirements and chassis construction. The resultant design is a lightweight, modular four-wheeled differential steer vehicle incorporating custom twin in-hub electric drives with emergency brakes. The vehicle is designed for a balance between low soil impact, stability, energy efficiency and traction. The paper includes modelling of the robot’s dynamics during an emergency brake in order to determine the potential for tipping. The vehicle is powered by a selection of energy sources including rechargeable lithium batteries and petrol-electric generators.
Resumo:
One of the main challenges facing online and offline path planners is the uncertainty in the magnitude and direction of the environmental energy because it is dynamic, changeable with time, and hard to forecast. This thesis develops an artificial intelligence for a mobile robot to learn from historical or forecasted data of environmental energy available in the area of interest which will help for a persistence monitoring under uncertainty using the developed algorithm.