967 resultados para State owned organization
Resumo:
Every day trillions of dollars circulate the globe in a digital data space and new forms of property and ownership emerge. Massive corporate entities with a global reach are formed and disappear with breathtaking speed, making and breaking personal fortunes the size of which defy imagination. Fictitious commodities abound. The genomes of entire nations have become corporately owned. Relationships have become the overt basis of economic wealth and political power. Hypercapitalism explores the problems of understanding this emergent form of global political economic organization by focusing on the internal relations between language, new media networks, and social perceptions of value. Taking an historical approach informed by Marx, Phil Graham draws upon writings in political economy, media studies, sociolinguistics, anthropology, and critical social science to understand the development, roots, and trajectory of the global system in which every possible aspect of human existence, including imagined futures, has become a commodity form.
Resumo:
In this paper, a progressive asymptotic approach procedure is presented for solving the steady-state Horton-Rogers-Lapwood problem in a fluid-saturated porous medium. The Horton-Rogers-Lapwood problem possesses a bifurcation and, therefore, makes the direct use of conventional finite element methods difficult. Even if the Rayleigh number is high enough to drive the occurrence of natural convection in a fluid-saturated porous medium, the conventional methods will often produce a trivial non-convective solution. This difficulty can be overcome using the progressive asymptotic approach procedure associated with the finite element method. The method considers a series of modified Horton-Rogers-Lapwood problems in which gravity is assumed to tilt a small angle away from vertical. The main idea behind the progressive asymptotic approach procedure is that through solving a sequence of such modified problems with decreasing tilt, an accurate non-zero velocity solution to the Horton-Rogers-Lapwood problem can be obtained. This solution provides a very good initial prediction for the solution to the original Horton-Rogers-Lapwood problem so that the non-zero velocity solution can be successfully obtained when the tilted angle is set to zero. Comparison of numerical solutions with analytical ones to a benchmark problem of any rectangular geometry has demonstrated the usefulness of the present progressive asymptotic approach procedure. Finally, the procedure has been used to investigate the effect of basin shapes on natural convection of pore-fluid in a porous medium. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
It has been suggested that phased atomic decay in a squeezed vacuum could be detected in the fluorescence spectrum emitted from a driven two-level atom in a cavity. Recently, the existence of other very distinctive features in the fluorescence spectra arising from the nonclassical features of the squeezed vacuum has been reported. In this paper, we investigate the possibility of experimental observation of these spectra. The main obstacle to the experimentalist is ensuring an effective squeezed-vacuum-atom coupling. To overcome this problem we propose the use of a Fabry-Perot microcavity. The analysis involves a consideration of the three-dimensional nature of the electromagnetic held, and the possibility of a mismatch between the squeezed and cavity modes. The problem of squeezing bandwidths is also addressed. We show that under experimentally realistic circumstances many of the spectral anomalies predicted in free space also occur in this environment. In addition, we report large population inversions in the dressed states of the two-level atom. [S1050-2947(98)02301-4].
Resumo:
The complete nucleotide sequence of the genomic RNA from the insect picorna-like virus Drosophila C virus (DCV) was determined. The DCV sequence predicts a genome organization different to that of other RNA virus families whose sequences are known. The single-stranded positive-sense genomic RNA is 9264 nucleotides in length and contains two large open reading frames (ORFs) which are separated by 191 nucleotides. The 5' ORF contains regions of similarities with the RNA-dependent RNA polymerase, helicase and protease domains of viruses from the picornavirus, comovirus and sequivirus families. The 3' ORF encodes the capsid proteins as confirmed by N-terminal sequence analysis of these proteins. The capsid protein coding region is unusual in two ways: firstly the cistron appears to lack an initiating methionine and secondly no subgenomic RNA is produced, suggesting that the proteins may be translated through internal initiation of translation from the genomic length RNA. The finding of this novel genome organization for DCV shows that this virus is not a member of the Picornaviridae as previously thought, but belongs to a distinct and hitherto unrecognized virus family.
Resumo:
A class of integrable boundary terms for the eight-state supersymmetric U model are presented by solving the graded reflection equations. The boundary model is solved by using the coordinate Bethe ansatz method and the Bethe ansatz equations are obtained. (C) 1998 Elsevier Science B.V.
Resumo:
Client satisfaction with health care sen ices has usually been researched in terms of socio-demographic and predispositional characteristics associated with the client. The present study included organizational characteristics as predictors of client satisfaction with health care services. Participants in the research were clients and employees of an Australian public-sector health care organization who responded to separate client and employee questionnaires. Hierarchical regression analyses indicated that, after controlling for a number of client characteristics, organizational characteristics, as perceived by employees, accounted for a significant proportion of additional variance in client satisfaction with health care services. Results of the present study provided some support for the proposition that employee perceptions of the working environment should be considered in a more comprehensive understanding of client satisfaction with health care services. Limitations of the study highlight practical difficulties in the assessment of client outcomes and methodological complexities in linking individual and organizational processes.
Resumo:
A parametric study is carried out to investigate how geological inhomogeneity affects the pore-fluid convective flow field, the temperature distribution, and the mass concentration distribution in a fluid-saturated porous medium. The related numerical results have demonstrated that (1) the effects of both medium permeability inhomogeneity and medium thermal conductivity inhomogeneity are significant on the pore-fluid convective flow and the species concentration distribution in the porous medium; (2) the effect of medium thermal conductivity inhomogeneity is dramatic on the temperature distribution in the porous medium, but the effect of medium permeability inhomogeneity on the temperature distribution may be considerable, depending on the Rayleigh number involved in the analysis; (3) if the coupling effect between pore-fluid flow and mass transport is weak, the effect of the Lewis number is negligible on the pore-fluid convective flow and temperature distribution, hut it is significant on the species concentration distribution in the medium.
Resumo:
An integrable eight-state supersymmetric U model is proposed, which is a fermion model with correlated single-particle and pair hoppings as well as uncorrelated triple-particle hopping. It has a gl(3/1) supersymmetry and contains one symmetry-preserving free parameter. The model is solved and the Bethe ansatz equations are obtained. [S0163-1829(98)00616-X].
Resumo:
We show how an initially prepared quantum state of a radiation mode in a cavity can be preserved for a long time using a feedback scheme based on the injection of appropriately prepared atoms. We present a feedback scheme both for optical cavities, which can be continuously monitored by a photodetector, and for microwave cavities, which can be monitored only indirectly via the detection of atoms that have interacted with the cavity field. We also discuss the possibility of applying these methods for decoherence control in quantum information processing.