950 resultados para Square array
Resumo:
MSC 2010: Primary: 447B37; Secondary: 47B38, 47A15
Resumo:
A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential to interrogate liquid level by measuring the strain induced in each mPOFBG embedded in a silicone rubber (SR) diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range, a good repeatability, and a high resolution. The sensitivity of the sensor is found to be 98 pm/cm of water, enhanced by more than a factor of 9 when compared to an equivalent sensor based on a silica fiber around 1550 nm. The temperature sensitivity is studied and a multi-sensor arrangement proposed, which has the potential to provide level readings independent of temperature and the liquid density.
Resumo:
In this study, two linear coplanar array antennas based on Indium Phosphide (InP) substrate are designed, presented and compared in terms of bandwidth and gain. Slot introduction in combination with coplanar structure is investigated, providing enhanced antenna gain and bandwidth at the 60 GHz frequency band. In addition the proposed array antennas are evaluated in terms of integration with a high-speed photodiode and investigated in terms of matching, providing a bandwidth that reaches 2 GHz. Moreover a potential beam forming scenario combined with photonic up-conversion scheme has been proposed. © 2013 IEEE.
Resumo:
Photovoltaic (PV) stations have been widely built in the world to utilize solar energy directly. In order to reduce the capital and operational costs, early fault diagnosis is playing an increasingly important role by enabling the long effective operation of PV arrays. This paper analyzes the terminal characteristics of faulty PV strings and arrays, and it develops a PV array fault diagnosis technique. The terminal current-voltage curve of a faulty PV array is divided into two sections, i.e., high-voltage and low-voltage fault diagnosis sections. The corresponding working points of healthy string modules and of healthy and faulty modules in an unhealthy string are then analyzed for each section. By probing into different working points, a faulty PV module can be located. The fault information is of critical importance for the maximum power point tracking and the array dynamical reconfiguration. Furthermore, the string current sensors can be eliminated, and the number of voltage sensors can be reduced by optimizing voltage sensor locations. Typical fault scenarios including monostring, multistring, and a partial shadow for a 1.6-kW 3 $times$ 3 PV array are presented and experimentally tested to confirm the effectiveness of the proposed fault diagnosis method.
Resumo:
The concept of a global civil society is gaining greater acceptance among International Relations (IR) scholars, yet few studies exist that look at the role of fraternal organizations and their influence in constructing this realm. Freemasonry, one of the oldest fraternal orders, exerts a powerful influence on its membership through its symbolism, architecture and ritual, based on the tenets of mutual respect and tolerance towards all human beings. Such principles helped in creating a body of practices and institutions as early as the eighteenth century which two hundred years later were identified and conceptualized as global civil society. ^ The allegations of anti-Masons and conspiracy theorists offer a continuous account of Masonry's influence on the political scene since its modern founding in 1717 Great Britain. Conspiracy theorists portray the coming of a New World Order, orchestrated and directed by a secret hierarchy of Masons/Illuminati. Even though the lens of conspiracy theories paints a distorted view of reality, it does focus attention to Freemasonry's activities as a major player in politics over the span of three centuries. Not only do such theories challenge the novelty of practices that make up a global civil society, but also the notion that it is an inclusive and growing sector that unites people across the globe. They also provide a valuable critique by pointing out the inconsistencies and discriminatory practices of Masonry as contrasted with the lofty ideals and aims for humanity. ^ The Masonic influence in the social world is perceived as one that reflects the liberal worldview where the nation-state and power structures are in pursuit of human progress, or profit. The symbolism of Masonry, however, carries a message that can be characterized as representing republican ideals. Masonic symbolism and ritual create spaces of meaning where the contradictions between the ideals and the structures of inequality and elitism can be resolved. Freemasonry as a symbolic system proclaiming their inherent republican values does have a global reach. However, the effectiveness of these values is bounded by the constraints that are inherent in a liberal world dominated by nation-states. ^
Resumo:
For the first time, the Z0 boson angular distribution in the center-of-momentum frame is measured in proton-proton collisions at [special characters omitted] = 7 TeV at the CERN LHC. The data sample, recorded with the CMS detector, corresponds to an integrated luminosity of approximately 36 pb–1 . Events in which there is a Z0 and at least one jet, with a jet transverse momentum threshold of 20 GeV and absolute jet rapidity less than 2.4, are selected for the analysis. Only the Z0's muon decay channel is studied. Within experimental and theoretical uncertainties, the measured angular distribution is in agreement with next-to-leading order perturbative QCD predictions.
Resumo:
The move from Standard Definition (SD) to High Definition (HD) represents a six times increases in data, which needs to be processed. With expanding resolutions and evolving compression, there is a need for high performance with flexible architectures to allow for quick upgrade ability. The technology advances in image display resolutions, advanced compression techniques, and video intelligence. Software implementation of these systems can attain accuracy with tradeoffs among processing performance (to achieve specified frame rates, working on large image data sets), power and cost constraints. There is a need for new architectures to be in pace with the fast innovations in video and imaging. It contains dedicated hardware implementation of the pixel and frame rate processes on Field Programmable Gate Array (FPGA) to achieve the real-time performance. ^ The following outlines the contributions of the dissertation. (1) We develop a target detection system by applying a novel running average mean threshold (RAMT) approach to globalize the threshold required for background subtraction. This approach adapts the threshold automatically to different environments (indoor and outdoor) and different targets (humans and vehicles). For low power consumption and better performance, we design the complete system on FPGA. (2) We introduce a safe distance factor and develop an algorithm for occlusion occurrence detection during target tracking. A novel mean-threshold is calculated by motion-position analysis. (3) A new strategy for gesture recognition is developed using Combinational Neural Networks (CNN) based on a tree structure. Analysis of the method is done on American Sign Language (ASL) gestures. We introduce novel point of interests approach to reduce the feature vector size and gradient threshold approach for accurate classification. (4) We design a gesture recognition system using a hardware/ software co-simulation neural network for high speed and low memory storage requirements provided by the FPGA. We develop an innovative maximum distant algorithm which uses only 0.39% of the image as the feature vector to train and test the system design. Database set gestures involved in different applications may vary. Therefore, it is highly essential to keep the feature vector as low as possible while maintaining the same accuracy and performance^
Resumo:
The study of the angular distribution of photon plus jet events in pp collisions at [special characters omitted] = 7 TeV with the Compact Muon Solenoid (CMS) detector is presented. The photon is restricted to the central region of the detector (:η: <1.4442) while the jet is allowed to be present in both central and forward regions of CMS (:η: < 2.4). Dominant backgrounds due to jets fragmenting into neutral mesons are accounted for through the use of a template method that discriminates between signal and background. The angular distribution, :η*:, is defined as the absolute value of the difference in η between the leading photon and leading jet in an event divided by two. The angular distribution ranging from 0–1.4 was examined and compared with next-to-leading order QCD predictions and was found to be in good agreement.
Resumo:
We describe a low-energy glow-discharge process using reactive ion etching system that enables non-circular device patterns, such as squares or hexagons, to be formed from a precursor array of uniform circular openings in polymethyl methacrylate, PMMA, defined by electron beam lithography. This technique is of a particular interest for bit-patterned magnetic recording medium fabrication, where close packed square magnetic bits may improve its recording performance. The process and results of generating close packed square patterns by self-limiting low-energy glow-discharge are investigated. Dense magnetic arrays formed by electrochemical deposition of nickel over self-limiting formed molds are demonstrated.
Resumo:
The work described in this thesis was conducted with the aim of: 1) investigating the binding capabilities of calix[4]arene-functionalized microcantilevers towards specific metal ions and 2) developing a new16-microcantilever array sensing system for the rapid, and simultaneous detection of metal ions in fresh water. Part I of this thesis reports on the use of three new bimodal calix[4]arenes (methoxy, ethoxy and crown) as potential host/guest sensing layers for detecting selected ions in dilute aqueous solutions using single microcantilever experimental system. In this work it was shown that modifying the upper rim of the calix[4]arenes with a thioacetate end group allow calix[4]arenes to self-assemble on Au(111) forming complete highly ordered monolayers. It was also found that incubating the microcantilevers coated with 5 nm of Inconel and 40 nm of Au for 1 h in a 1.0 M solution of calix[4]arene produced the highest sensitivity. Methoxy-functionalized microcantilevers showed a definite preference for Ca²⁺ ions over other cationic guests and were able to detect trace concentration as low as 10⁻¹² M in aqueous solutions. Microcantilevers modified with ethoxy calix[4]arene displayed their highest sensitivity towards Sr²⁺ and to a lesser extent Ca²⁺ ions. Crown calix[4]arene-modified microcantilevers were however found to bind selectively towards Cs⁺ ions. In addition, the counter anion was also found to contribute to the deflection. For example methoxy calix[4]arene-modified microcantilever was found to be more sensitive to CaCl₂ over other water-soluble calcium salts such as Ca(NO₃)₂ , CaBr₂ and CaI₂. These findings suggest that the response of calix[4]arene-modified microcantilevers should be attributed to the target ionic species as a whole instead of only considering the specific cation and/or anion. Part II presents the development of a 16-microcantilever sensor setup. The implementation of this system involved the creation of data analysis software that incorporates data from the motorized actuator and a two-axis photosensitive detector to obtain the deflection signal originating from each individual microcantilever in the array. The system was shown to be capable of simultaneous measurements of multiple microcantilevers with different coatings. A functionalization unit was also developed that allows four microcantilevers in the array to be coated with an individual sensing layer one at the time. Because of the variability of the spring constants of different cantilevers within the array, results presented were quoted in units of surface stress unit in order to compare values between the microcantilevers in the array.
Resumo:
Polygonal Fresnel zone plates with a low number of sides have deserved attention in micro and nanoptics, because they can be straightforwardly integrated in photonic devices, and, at the same time, they represent a balance between the high-focusing performance of a circular zone plate and the easiness of fabrication at micro and nano-scales of polygons. Among them, the most representative family are Square Fresnel Zone Plates (SFZP). In this work, we propose two different customized designs of SFZP for optical wavelengths. Both designs are based on the optimization of a SFZP to perform as close as possible as a usual Fresnel Zone Plate. In the first case, the criterion followed to compute it is the minimization of the difference between the area covered by the angular sector of the zone of the corresponding circular plate and the one covered by the polygon traced on the former. Such a requirement leads to a customized polygon-like Fresnel zone. The simplest one is a square zone with a pattern of phases repeating each five zones. On the other hand, an alternative SFZP can be designed guided by the same criterion but with a new restriction. In this case, the distance between the borders of different zones remains unaltered. A comparison between the two lenses is carried out. The irradiance at focus is computed for both and suitable merit figures are defined to account for the difference between them.
Resumo:
Peer reviewed
Resumo:
Major funding was provided by the UK Natural Environment Research Council (NERC) under grant NE/I028017/1 and partially supported by Boğaziçi University Research Fund (BAP) under grant 6922. We would like to thank all the project members from the University of Leeds, Boğaziçi University, Kandilli Observatory, Aberdeen University and Sakarya University. I would also like to thank Prof. Ali Pinar and Dr. Kıvanç Kekovalı for their valuable comments. Some of the figures were generated by GMT software (Wessel and Smith, 1995).
Resumo:
Peer reviewed
Resumo:
Major funding was provided by the UK Natural Environment Research Council (NERC) under grant NE/I028017/1 and partially supported by Boğaziçi University Research Fund (BAP) under grant 6922. We would like to thank all the project members from the University of Leeds, Boğaziçi University, Kandilli Observatory, Aberdeen University and Sakarya University. I would also like to thank Prof. Ali Pinar and Dr. Kıvanç Kekovalı for their valuable comments. Some of the figures were generated by GMT software (Wessel and Smith, 1995).