942 resultados para Specific protein(s)
Resumo:
Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. It induces a specific membrane rearrangement, designated membranous web, that serves as a scaffold for the HCV replication complex. However, the mechanisms underlying membranous web formation are poorly understood. Based on fluorescence resonance energy transfer (FRET) and confirmatory coimmunoprecipitation analyses, we provide evidence for an oligomerization of NS4B in the membrane environment of intact cells. Several conserved determinants were found to be involved in NS4B oligomerization, through homotypic and heterotypic interactions. N-terminal amphipathic ?-helix AH2, comprising amino acids 42 to 66, was identified as a major determinant for NS4B oligomerization. Mutations that affected the oligomerization of NS4B disrupted membranous web formation and HCV RNA replication, implying that oligomerization of NS4B is required for the creation of a functional replication complex. These findings enhance our understanding of the functional architecture of the HCV replication complex and may provide new angles for therapeutic intervention. At the same time, they expand the list of positive-strand RNA virus replicase components acting as oligomers.
Resumo:
ABSTRACT : Fungal infections have become a major source of diseases in immuncompromised patients, but are quite benign in healthy individuals. As fungi are eukaryotes, and share many biological processes with humans, many antifungal drugs can cause toxicity in the patients. Therefore, the characterization of signaling pathways specific to the anti-fungal immune response is relevant for the better understanding of the disease and the development of new therapeutic approaches. Dectin-1 is the major mammalian pattern recognition receptor for the fungal component zymosan. Dectin-1 is an innate non-Toll-like receptor containing immunoreceptor tyrosine-based activation motifs (ITAMs). Card9, Bc110 and Maltl are proteins that have been shown to play a key role in the Dectin-l-induced signaliñg pathway by controlling Dectin-l-mediated cell activation, cytokine production and innate anti-fungal immunity in mice. Here we investigate the role of the Card9-Bc110-Maltl complex in humans using the monocytic cell line THP-1. We show that Card9 interacts with Bc110 through a CARD-CARD interaction and that interaction of Card9 with Bc110 is required for NF-xB activation. We further demonstrate that Card9 is phosphorylated in its C-terminal part on serine residues. The phosphorylation status of Card9 can influence its ability to active NF-xB, since mutation of the phosphorylation sites increases its ability to activate NF-xB. We find that Card9 is expressed in myeloid derived cells, such as the human monocytic cell lines THP1 and U937, and in human monocyte-enriched PBLs and monocyte-derived DCs. Our findings demonstrate that Card9 is implicated in anti-fungal responses, since silencing of Card9 as well as of Bc110 and Maltl diminishes the capacity of THP1 cells to produce TNF-a in response to zymosan. Interestingly, activation of the NF-xB and MAPK pathway remained normal and levels of TNF-a mRNA produced were also not affected in THP 1 cells silenced for the expression of Card9, Bc110 or Malt1. Using a Malt1 inhibitor, we provide evidence that the proteolytic activity of Malt1 is needed for zymosan-induced TNF-a production in THP 1 cells and bone marrow-derived macrophages of mice, but further experiments are required to confirm these findings and identify the substrate(s) of Malt1. In conclusion, our results reveal an important role for Card9 in the innate immune response of human macrophages to fungi. RÉSUMÉ : Les infections fongiques sont une source majeure de maladie chez les patients immunodéprimés, alors qu'elles sont plutôt bénignes chez les individus sains. Comme les champignons sont des eucaryotes et partagent beaucoup de processus biologiques avec les humains, les médicaments antifongiques peuvent être source de toxicité chez les patients. Il est donc important de mieux caractériser les voies de signalisation intracellulaire des réponses anti-fongiques pour pouvoir développer de nouvelles approches thérapeutiques. La protéine Dectin-1 est le récepteur principal du composé fongique zymosan. Les protéines Card9, Bc110 et Maltl ont été décrites comme jouant un rôle primordial dans les signaux d'activation induits par Dectin-l, en contrôlant l'activité cellulaire, la production de cytokines et la défense anti-fongique dans les souris. Dans cette étude, nous investiguons le rôle du complexe Card9-Bc110-Maltl dans la lignée monocytaire humaine THP1. Nous montrons que Card9 interagit avec Bc110 par une interaction CARD-CARD et que cette interaction est requise pour activer le facteur de transcription NF-xB. Nous observons que Card9 est phosphorylé dans sa partie C-terminale sur des résidus serine et que l'état de phosphorylation de Card9 influence sa capacité à activer NF-xB. En effet, sa capacité à activer NF-xB est augmentée, après mutation des sites de phosphorylation. La génération d'un anticorps spécifique dirigé contre Card9 nous a permis de démontrer que Card9 est exprimé dans des cellules myéloïdes comme les lignées cellulaires monocytiques THP-1 et U-937, ainsi que dans les cellules dendritiques humaines. Nos résultats démontrent que Card9 est impliqué dans la réponse immunitaire antifongique puisque la réduction de l'expression de Card9 ainsi que de Bc110 et de Malt1 diminue la capacité des THP-1 à produire du TNF-a en réponse au zymosan. Par contre, les voies de signalisation NF-xB et MAPK ainsi que les niveaux de mRNA de TNF-a produits en réponse au zymosan ne sont pas affectés dans ces cellules. En utilisant un inhibiteur de Malt1, nous montrons que l'activité protéolytique de Malt1 est nécessaire pour la production de TNF-a induite par le zymosan dans les cellules THP-1 ainsi que dans les macrophages de souris, mais d'autres expériences seront nécessaires pour confirmer cette observation et identifier le(s) substrat(s) de Malt1 responsables de cet effet. En conclusion, nos résultats révèlent un rôle important de la protéine Card9 dans la réponse immunitaire innée antifongique dans les macrophages humains.
Resumo:
In vivo exposure to chronic hypoxia (CH) depresses myocardial performance and tolerance to ischemia, but daily reoxyenation during CH (CHR) confers cardioprotection. To elucidate the underlying mechanism, we tested the role of phosphatidylinositol-3-kinase-protein kinase B (Akt) and p42/p44 extracellular signal-regulated kinases (ERK1/2), which are known to be associated with protection against ischemia/reperfusion (I/R). Male Sprague-Dawley rats were maintained for two weeks under CH (10% O(2)) or CHR (as CH but with one-hour daily exposure to room air). Then, hearts were either frozen for biochemical analyses or Langendorff-perfused to determine performance (intraventricular balloon) and tolerance to 30-min global ischemia and 45-min reperfusion, assessed as recovery of performance after I/R and infarct size (tetrazolium staining). Additional hearts were perfused in the presence of 15 micromol/L LY-294002 (inhibitor of Akt), 10 micromol/L UO-126 (inhibitor of ERK1/2) or 10 micromol/L PD-98059 (less-specific inhibitor of ERK1/2) given 15 min before ischemia and throughout the first 20 min of reperfusion. Whereas total Akt and ERK1/2 were unaffected by CH and CHR in vivo, in CHR hearts the phosphorylation of both proteins was higher than in CH hearts. This was accompanied by better performance after I/R (heart rate x developed pressure), lower end-diastolic pressure and reduced infarct size. Whereas the treatment with LY-294002 decreased the phosphorylation of Akt only, the treatment with UO-126 decreased ERK1/2, and that with PD-98059 decreased both Akt and ERK1/2. In all cases, the cardioprotective effect led by CHR was lost. In conclusion, in vivo daily reoxygenation during CH enhances Akt and ERK1/2 signaling. This response was accompanied by a complex phenotype consisting in improved resistance to stress, better myocardial performance and lower infarct size after I/R. Selective inhibition of Akt and ERK1/2 phosphorylation abolishes the beneficial effects of the reoxygenation. Therefore, Akt and ERK1/2 have an important role to mediate cardioprotection by reoxygenation during CH in vivo.
Resumo:
NMDA receptors (NMDARs) mediate ischemic brain damage, for which interactions between the C termini of NR2 subunits and PDZ domain proteins within the NMDAR signaling complex (NSC) are emerging therapeutic targets. However, expression of NMDARs in a non-neuronal context, lacking many NSC components, can still induce cell death. Moreover, it is unclear whether targeting the NSC will impair NMDAR-dependent prosurvival and plasticity signaling. We show that the NMDAR can promote death signaling independently of the NR2 PDZ ligand, when expressed in non-neuronal cells lacking PSD-95 and neuronal nitric oxide synthase (nNOS), key PDZ proteins that mediate neuronal NMDAR excitotoxicity. However, in a non-neuronal context, the NMDAR promotes cell death solely via c-Jun N-terminal protein kinase (JNK), whereas NMDAR-dependent cortical neuronal death is promoted by both JNK and p38. NMDAR-dependent pro-death signaling via p38 relies on neuronal context, although death signaling by JNK, triggered by mitochondrial reactive oxygen species production, does not. NMDAR-dependent p38 activation in neurons is triggered by submembranous Ca(2+), and is disrupted by NOS inhibitors and also a peptide mimicking the NR2B PDZ ligand (TAT-NR2B9c). TAT-NR2B9c reduced excitotoxic neuronal death and p38-mediated ischemic damage, without impairing an NMDAR-dependent plasticity model or prosurvival signaling to CREB or Akt. TAT-NR2B9c did not inhibit JNK activation, and synergized with JNK inhibitors to ameliorate severe excitotoxic neuronal loss in vitro and ischemic cortical damage in vivo. Thus, NMDAR-activated signals comprise pro-death pathways with differing requirements for PDZ protein interactions. These signals are amenable to selective inhibition, while sparing synaptic plasticity and prosurvival signaling.
Resumo:
The flexibility of different regions of HIV-1 protease was examined by using a database consisting of 73 X-ray structures that differ in terms of sequence, ligands or both. The root-mean-square differences of the backbone for the set of structures were shown to have the same variation with residue number as those obtained from molecular dynamics simulations, normal mode analyses and X-ray B-factors. This supports the idea that observed structural changes provide a measure of the inherent flexibility of the protein, although specific interactions between the protease and the ligand play a secondary role. The results suggest that the potential energy surface of the HIV-1 protease is characterized by many local minima with small energetic differences, some of which are sampled by the different X-ray structures of the HIV-1 protease complexes. Interdomain correlated motions were calculated from the structural fluctuations and the results were also in agreement with molecular dynamics simulations and normal mode analyses. Implications of the results for the drug-resistance engendered by mutations are discussed briefly.
Resumo:
Calcineurin is a key protein phosphatase required for hyphal growth and virulence in Aspergillus fumigatus, making it an attractive antifungal target. However, currently available calcineurin inhibitors, FK506 and cyclosporine A, are immunosuppressive, limiting usage in the treatment of patients with invasive aspergillosis. Therefore, the identification of endogenous inhibitors of calcineurin belonging to the calcipressin family is an important parallel strategy. We previously identified the gene cbpA as the A. fumigatus calcipressin member and showed its involvement in hyphal growth and calcium homeostasis. However, the mechanism of its activation/inhibition through phosphorylation and its interaction with calcineurin remains unknown. Here we show that A. fumigatus CbpA is phosphorylated at three distinct domains, including the conserved SP repeat motif (phosphorylated domain-I; PD-I), a filamentous fungal-specific domain (PD-II), and the C-terminal CIC motif (Calcipressin Inhibitor of Calcineurin; PD-III). While mutation of three phosphorylated residues (Ser208, Ser217, Ser223) in the PD-II did not affect CbpA function in vivo, mutation of the two phosphorylated serines (Ser156, Ser160) in the SP repeat motif caused reduced hyphal growth and sensitivity to oxidative stress. Mutational analysis in the key domains in calcineurin A (CnaA) and proteomic interaction studies confirmed the requirement of PxIxIT motif-binding residues (352-NIR-354) and the calcineurin B (CnaB)-binding helix residue (V371) for the binding of CbpA to CnaA. Additionally, while the calmodulin-binding residues (442-RVF-444) did not affect CbpA binding to CnaA, three mutations (T359P, H361L, and L365S) clustered between the CnaA catalytic and the CnaB-binding helix were also required for CbpA binding. This is the first study to analyze the phosphorylation status of calcipressin in filamentous fungi and identify the domains required for binding to calcineurin.
Resumo:
Glutaredoxins are members of a superfamily of thiol disulfide oxidoreductases involved in maintaining the redox state of target proteins. In Saccharomyces cerevisiae, two glutaredoxins (Grx1 and Grx2) containing a cysteine pair at the active site had been characterized as protecting yeast cells against oxidative damage. In this work, another subfamily of yeast glutaredoxins (Grx3, Grx4, and Grx5) that differs from the first in containing a single cysteine residue at the putative active site is described. This trait is also characteristic for a number of glutaredoxins from bacteria to humans, with which the Grx3/4/5 group has extensive homology over two regions. Mutants lacking Grx5 are partially deficient in growth in rich and minimal media and also highly sensitive to oxidative damage caused by menadione and hydrogen peroxide. A significant increase in total protein carbonyl content is constitutively observed in grx5cells, and a number of specific proteins, including transketolase, appear to be highly oxidized in this mutant. The synthetic lethality of the grx5 and grx2 mutations on one hand and ofgrx5 with the grx3 grx4 combination on the other points to a complex functional relationship among yeast glutaredoxins, with Grx5 playing a specially important role in protection against oxidative stress both during ordinary growth conditions and after externally induced damage. Grx5-deficient mutants are also sensitive to osmotic stress, which indicates a relationship between the two types of stress in yeast cells.
Resumo:
The conversion of cellular prion protein (PrPc), a GPI-anchored protein, into a protease-K-resistant and infective form (generally termed PrPsc) is mainly responsible for Transmissible Spongiform Encephalopathies (TSEs), characterized by neuronal degeneration and progressive loss of basic brain functions. Although PrPc is expressed by a wide range of tissues throughout the body, the complete repertoire of its functions has not been fully determined. Recent studies have confirmed its participation in basic physiological processes such as cell proliferation and the regulation of cellular homeostasis. Other studies indicate that PrPc interacts with several molecules to activate signaling cascades with a high number of cellular effects. To determine PrPc functions, transgenic mouse models have been generated in the last decade. In particular, mice lacking specific domains of the PrPc protein have revealed the contribution of these domains to neurodegenerative processes. A dual role of PrPc has been shown, since most authors report protective roles for this protein while others describe pro-apoptotic functions. In this review, we summarize new findings on PrPc functions, especially those related to neural degeneration and cell signaling.
Resumo:
Background: Bacterial populations are highly successful at colonizing new habitats and adapting to changing environmental conditions, partly due to their capacity to evolve novel virulence and metabolic pathways in response to stress conditions and to shuffle them by horizontal gene transfer (HGT). A common theme in the evolution of new functions consists of gene duplication followed by functional divergence. UlaG, a unique manganese-dependent metallo-b-lactamase (MBL) enzyme involved in L-ascorbate metabolism by commensal and symbiotic enterobacteria, provides a model for the study of the emergence of new catalytic activities from the modification of an ancient fold. Furthermore, UlaG is the founding member of the so-called UlaG-like (UlaGL) protein family, a recently established and poorly characterized family comprising divalent (and perhaps trivalent)metal-binding MBLs that catalyze transformations on phosphorylated sugars and nucleotides. Results: Here we combined protein structure-guided and sequence-only molecular phylogenetic analyses to dissect the molecular evolution of UlaG and to study its phylogenomic distribution, its relatedness with present-day UlaGL protein sequences and functional conservation. Phylogenetic analyses indicate that UlaGL sequences are present in Bacteria and Archaea, with bona fide orthologs found mainly in mammalian and plant-associated Gramnegative and Gram-positive bacteria. The incongruence between the UlaGL tree and known species trees indicates exchange by HGT and suggests that the UlaGL-encoding genes provided a growth advantage under changing conditions. Our search for more distantly related protein sequences aided by structural homology has uncovered that UlaGL sequences have a common evolutionary origin with present-day RNA processing and metabolizing MBL enzymes widespread in Bacteria, Archaea, and Eukarya. This observation suggests an ancient origin for the UlaGL family within the broader trunk of the MBL superfamily by duplication, neofunctionalization and fixation. Conclusions: Our results suggest that the forerunner of UlaG was present as an RNA metabolizing enzyme in the last common ancestor, and that the modern descendants of that ancestral gene have a wide phylogenetic distribution and functional roles. We propose that the UlaGL family evolved new metabolic roles among bacterial and possibly archeal phyla in the setting of a close association with metazoans, such as in the mammalian gastrointestinal tract or in animal and plant pathogens, as well as in environmental settings. Accordingly, the major evolutionary forces shaping the UlaGL family include vertical inheritance and lineage-specific duplication and acquisition of novel metabolic functions, followed by HGT and numerous lineage-specific gene loss events.
Resumo:
The recently discovered apolipoprotein AV (apoAV) gene has been reported to be a key player in modulating plasma triglyceride levels. Here we identify the hepatocyte nuclear factor-4 (HNF-4 ) as a novel regulator of human apoAV gene. Inhibition of HNF-4 expression by small interfering RNA resulted in down-regulation of apoAV. Deletion, mutagenesis, and binding assays revealed that HNF-4 directly regulates human apoAV promoter through DR1 [a direct repeat separated by one nucleotide (nt)], and via a novel element for HNF-4 consisting of an inverted repeat separated by 8 nt (IR8). In addition, we show that the coactivator peroxisome proliferator-activated receptor- coactivator-1 was capable of stimulating the HNF-4 -dependent transactivation of apoAV promoter. Furthermore, analyses in human hepatic cells demonstrated that AMP-activated protein kinase (AMPK) and the MAPK signaling pathway regulate human apoAV expression and suggested that this regulation may be mediated, at least in part, by changes in HNF-4 . Intriguingly, EMSAs and mice with a liver-specific disruption of the HNF-4 gene revealed a species-distinct regulation of apoAV by HNF-4 , which resembles that of a subset of HNF-4 target genes. Taken together, our data provide new insights into the binding properties and the modulation of HNF-4 and underscore the role of HNF-4 in regulating triglyceride metabolism.
Resumo:
Membrane fusion is induced by SNARE complexes that are anchored in both fusion partners. SNAREs zipper up from the N to C terminus bringing the two membranes into close apposition. Their transmembrane domains (TMDs) might be mere anchoring devices, deforming bilayers by mechanical force. Structural studies suggested that TMDs might also perturb lipid structure by undergoing conformational transitions or by zipping up into the bilayer. Here, we tested this latter hypothesis, which predicts that the activity of SNAREs should depend on the primary sequence of their TMDs. We replaced the TMDs of all vacuolar SNAREs (Nyv1, Vam3, and Vti1) by a lipid anchor, by a TMD from a protein unrelated to the membrane fusion machinery, or by artificial leucine-valine sequences. Individual exchange of the native SNARE TMDs against an unrelated transmembrane anchor or an artificial leucine-valine sequence yielded normal fusion activities. Fusion activity was also preserved upon pairwise exchange of the TMDs against unrelated peptides, which eliminates the possibility for specific TMD-TMD interactions. Thus, a specific primary sequence or zippering beyond the SNARE domains is not a prerequisite for fusion. Lipid-anchored Vti1 was fully active, and lipid-anchored Nyv1 permitted the reaction to proceed up to hemifusion, and lipid-anchored Vam3 interfered already before hemifusion. The unequal contribution of proteinaceous TMDs on Vam3 and Nyv1 suggests that Q- and R-SNAREs might make different contributions to the hemifusion intermediate and the opening of the fusion pore. Furthermore, our data support the view that SNARE TMDs serve as nonspecific membrane anchors in vacuole fusion.
Resumo:
In vertebrates, early brain development takes place at the expanded anterior end of the neural tube, which is filled with embryonic cerebrospinal fluid (E-CSF). We have recently identified a transient blood-CSF barrier that forms between embryonic days E3 and E4 in chick embryos and that is responsible for the transport of proteins and control of E-CSF homeostasis, including osmolarity. Here we examined the presence of glucose transporter GLUT-1 as well the presence of caveolae-structural protein Caveolin1 (CAV-1) in the embryonic blood-CSF barrier which may be involved in the transport of glucose and of proteins, water and ions respectively across the neuroectoderm. In this paper we demonstrate the presence of GLUT-1 and CAV-1 in endothelial cells of blood vessels as well as in adjacent neuroectodermal cells, located in the embryonic blood-CSF barrier. In blood vessels, these proteins were detected as early as E4 in chick embryos and E12.7 in rat embryos, i.e. the point at which the embryonic blood-CSF barrier acquires this function. In the neuroectoderm of the embryonic blood-CSF barrier, GLUT-1 was also detected at E4 and E12.7 respectively, and CAV-1 was detected shortly thereafter in both experimental models. These experiments contribute to delineating the extent to which the blood-CSF embryonic barrier controls E-CSF composition and homeostasis during early stages of brain development in avians and mammals. Our results suggest the regulation of glucose transport to the E-CSF by means of GLUT-1 and also suggest a mechanism by which proteins are transported via transcellular routes across the neuroectoderm, thus reinforcing the crucial role of E-CSF in brain development.
Resumo:
OBJECTIVES: Chloride intracellular channel protein 4 (Clic4) is a ubiquitously expressed protein involved in multiple cellular processes including cell-cycle control, cell differentiation, and apoptosis. Here, we investigated the role of Clic4 in pancreatic β-cell apoptosis. METHODS: We used βTC-tet cells and islets from β-cell specific Clic4 knockout mice (βClic4KO) and assessed cytokine-induced apoptosis, Bcl2 family protein expression and stability, and identified Clic4-interacting proteins by co-immunoprecipitation and mass spectrometry analysis. RESULTS: We show that cytokines increased Clic4 expression in βTC-tet cells and in mouse islets and siRNA-mediated silencing of Clic4 expression in βTC-tet cells or its genetic inactivation in islets β-cells, reduced cytokine-induced apoptosis. This was associated with increased expression of Bcl-2 and increased expression and phosphorylation of Bad. Measurement of Bcl-2 and Bad half-lives in βTC-tet cells showed that Clic4 silencing increased the stability of these proteins. In primary islets β-cells, absence of Clic4 expression increased Bcl-2 and Bcl-xL expression as well as expression and phosphorylation of Bad. Mass-spectrometry analysis of proteins co-immunoprecipitated with Clic4 from βTC-tet cells showed no association of Clic4 with Bcl-2 family proteins. However, Clic4 co-purified with proteins from the proteasome suggesting a possible role for Clic4 in regulating protein degradation. CONCLUSIONS: Collectively, our data show that Clic4 is a cytokine-induced gene that sensitizes β-cells to apoptosis by reducing the steady state levels of Bcl-2, Bad and phosphorylated Bad.
Resumo:
Glioblastoma (GBM) is the most common and most aggressive malignant primary brain tumour. Despite the aggressiveness of the applied therapy, the prognosis remains poor with a median survival to of about 15 months. It is important to identify new candidate genes that could have clinical application in this disease. Previous gene expression studies from human GBM samples in our laboratory, revealed Ubiquitin Specific Peptidase 15 (USP15) as a gene with low expression, significantly associated with genomic deletions of the chromosomal region encompassing the USP15 locus. USP15 belongs to the ubiquitin-specific protease (USPs) family of which the main role is the reversion of ubiquitination and thereby stabilization of substrates. Previously, USP15 has been suggested to have a tumour suppressor function via its substrates APC and Caspase 3. We established GBM cell lines that stably express USP15 wt or its catalytic mutant. USP15 expression impairs cell growth by inhibiting cell cycle progression. On the other hand USP15 depletion in GBM cell lines induces cell cycle progression and proliferation. In order to identify the molecular pathways in which USP15 is implicated we aimed to identify protein-binding partners in the GBM cell line LN-229 by Mass spectrometry. As a result we identified eight new proteins that interact with USP15. These proteins are involved in important cellular processes like cytokinesis, cell cycle, cellular migration, and apoptosis. Three of these protein interactions were confirmed by co-immunoprecipitation in four GBM cell lines LN-229, LN428, LN18, LN-Z308. One of the binding proteins is HECTD1 E3 ligase of which the murine homologue promotes the APC-Axin interaction to negatively regulate the Wnt pathway. USP15 can de-ubiquitinate HECTD1 in the LN229 cell line while its depletion led to decrease of HECTD1 in GBM cell lines suggesting stabilizing role for USP15. Moreover, HECTD1 stable expression in LN229 inhibits cell cycle, while its depletion induces cell cycle progression. These results suggest that the USP15-HECTD1 interaction might enhance the antiproliferative effect of HECTD1 in GBM cell lines. Using the TOPflash/FOPflash luciferase system we showed that HECTD1 and USP15 overexpression can attenuate WNT pathway activity, and decrease the Axin2 expression. These data indicate that this new protein interaction of USP15 with HECTD1 results in negative regulation of the WNT pathway in GBM cell lines. Further investigation of the regulation of this interaction or of the protein binding network of HECTD1 in GBM may allow the discovery of new therapeutic targets. Finally PTPIP51 and KIF15 are the other two identified protein partners of USP15. These two proteins are involved in cell proliferation and their depletion in LN-229 cell line led to induction of cell cycle progression. USP15 displays a stabilizing role for them. Hence, these results show that the tumour suppressive role of USP15 in GBM cell line via different molecular mechanisms indicating the multidimensional function of USP15. Résumé Le glioblastome (GBM) est la tumeur primaire la plus fréquente et la plus agressive du cervau caractérisée par une survie médiane d'environ à 15 mois. De précédant travaux effectués au sein de notre laboratoire portant sur l'étude de l'expression de gènes pour des échantillons humains de GBM ont montré que le gène Ubiquitin Specific Peptidase 15 (USP1S) était significativement associée à une délétion locales à 25% des cas. Initialement, les substrats protéiques APC et CaspaseS de USP15 ont conduit à considérer cette protéine comme un suppresseur de tumeur. USP15 appartient à la famille protèsse spécifique de l'ubiquitine (USPs) dont le rôle principal est la réversion de l'ubiquitination et la stabilisation de substrats. Par conséquent, nous avons établi des lignées de cellules de glioblastome qui expriment de manière stable USP15 ou bien son mutant catalytique. Ainsi, nous avons ainsi démontré que l'expression de l'USP15 empêche la croissance cellulaire en inhibant la progression du cycle cellulaire. Inversement, la suppression de l'expression du gène USP15 dans les lignées cellulaires de glioblastome induit la progression du cycle cellulaire et la prolifération. Afin d'identifier les voies moléculaires dans lesquelles sont impliquées USP15, nous avons cherché à identifier les partenaires de liaisons protéiques par spectrométrie de masse dans la lignée cellulaire LN-229. Ainsi, huit nouvelles protéines interagissant avec USP15 ont été identifiées dont la ligase E3 HECTD1. L'homologue murin de Hectdl favorise l'interaction APC-Axin en régulant négativement la voie de signalisation de Wnt. USP15 interagit en désubiquitinant HECTD1 dans la lignée cellulaire LN-229 et provoque ainsi l'atténuation de l'activité de cette voie de signalisation. En conclusion, HECTD1, en interagissant avec USP15, joue un rôle de suppresseur de tumeur dans les lignées cellulaire de GBM.
Resumo:
CREB-binding protein (CBP) and p300 are transcriptional coactivators involved in numerous biological processes that affect cell growth, transformation, differentiation, and development. In this study, we provide evidence of the involvement of homeodomain-interacting protein kinase 2 (HIPK2) in the regulation of CBP activity. We show that HIPK2 interacts with and phosphorylates several regions of CBP. We demonstrate that serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of CBP C-terminal activation domain. Moreover, we show that HIPK2 strongly potentiates the transcriptional activity of CBP. However, our data suggest that HIPK2 activates CBP mainly by counteracting the repressive action of cell cycle regulatory domain 1 (CRD1), located between amino acids 977 and 1076, independently of CBP phosphorylation. Our findings thus highlight a complex regulation of CBP activity by HIPK2, which might be relevant for the control of specific sets of target genes involved in cellular proliferation, differentiation and apoptosis.