961 resultados para Soil-water Characteristic Curve
Resumo:
This work had as objective to quantify the reforestation for water retention in the Palmital Stream watershed, County of Jaboticabal, SP, by using the methodology of compensatory forestation for retention of water in watersheds. This methodology esteems the retention of water in watersheds considering the world medium value of destiny of the water in the hydrologic cycle, the use/occupation of the soil (forest, pasture and agriculture) and its permeability. The watershed in this study presents an area of 10,625.21 ha, being 237.75 ha at forest, 467.01 ha in pasture and 9,237.57 ha in agriculture. The medium values of the permeability identified in the soils were of 94.81 mm h -1 in forest, 8.99 mm t -1 in pasture and 36.01 mm h -1 in agriculture (sugar cane). Considering that should infiltrate in the soil 20.55% of the water that precipitates on the watershed, and, that the losses of water in forest areas is considered standard, the total estimated volume to compensate the excessive loss that occur in the areas of pasture and agriculture is 12.21 million of m 3ano. The compensatory forestation to retain that volume of loss should contemplate an area of 942.73 ha (8.87% of the area of the watershed). The reforestation can be priority in permanent conservation area or in areas of Legal Reserve.
Resumo:
This study presents the results obtained in a field experiment carried out at Glicério, Northwest of São Paulo state, Brazil, whose objective was to analyze changes of selected soil physical properties and water infiltration rates on a Yellow-Red Latosol, under three different management conditions. The experimental design was arranged as completely randomized split-block with twelve treatments, which corresponded to four depths (0-0.05 m; 0.05-0.10 m; 0.10-0.20 m and 0.20-0.40 m) and three conditions of soil use and management with four replications. The soil surface conditions were: conventional tillage (one disking with moulboard plus two levelling passes with harrow), nine months before starting filed experiences; recent conventional tillage (also one disking with moulboard plus two levelling passes with harrow) and native forest. The conventional tillage areas were cropped for about fifteen years with annual cultures. The considered soil general physical properties were: macroporosity, microporosity, total porosity, bulk density, soil moisture and penetration resistance and, in addition; soil water infiltration rates were also recorded. According to our results, differences on general soil physical properties and infiltration rates appeared when both tilled sub-treatments and native forest were compared. Both, plots recently prepared by conventional tillage and those prepared by tillage but left nine months in rest, presented a statistically significant decrease of constant (final) water infiltration rates of 92.72% and 91.91% when compared with native forest plots.
Resumo:
This study aimed to verify the effects of four different minimum soil watler potentials (-30, -40, -50 e -70 kPa) and two different plastic tunnel positions (North-South and East-West) on net melon yield. The results showed that in the East-West position the yield and fruit weight were higher than in the North-South position. The highest yields of melon crop were obtained from -30 kPa. to -40 kPa minimum soil water potential.
Resumo:
The knowledge of meteorological elements in protected environment is very important for commercial plants, because of possibility to produce for all the year according to the study conduced in Botucatu - SP, in order to evaluate the effects of different irrigation treatments on three lettuce cultivars. (Lisa, Crespa and American). The study was developed in a polyethilene tunnel with orientation northeast/southwest (NE/SW) and the fertigation through drip irrigation. Leaf number, head diameter, fresh weigh, dry weigh, meteorological elements and evaporation from minievaporimeters were determined. Four treatments of minimum soil water potential were applied: 20, 28, 35 and 45 kPa and the results showed the treatment -35 kPa showed the highest lettuce production and maximurn water efficiency use. The highest productions occurred in May/June, July/September and September/November, while the worst one was in February/April. There was not significant difference of dry mass production among the treatments, independently of the year period with exception of the Crespa cultivar which was superior in September/November. The south face showed the highest evaporation.
Resumo:
The present study had as its objective the assessment of the possible effects of hydric stress on the growth, physiological characteristics of two different genetic materials from Eucalyptus urograndis. The experiment was carried out in a greenhouse at Faculdade de Ciências Agronômicas of UNESP, campus Botucatu from March to July, 2005. The hydric management was established based on the soil water potential. Two water levels were established, doing the evapotranspired water replacement by pot weighing. Two clones were used, Eucalyptus urograndis 105 and 433, being the first one more resistant to the hydric deficit and the 433 more sensitive to stress. The study was made from a 2×2 factorial (two levels of water × two genetic materials). For the hydric management, the plants were irrigated when they reached a soil water potential of -0.03 MPa or -1.5 MPa. The assessments made were: diffusive water vapor of stomato, transpiration, leaf temperature and leaf water potential. The physiological evaluations throughout the day, in the end of the experiment. Treatments without hydric stress had a higher performance in all studied characteristics, but the clones had no influence. The stomatic resistance followed the potentials, showing higher values in the treatments submitted to hydric deficiency, more intensely for clone 433, being that this also happened with the leaf water potential. The transpiration also followed the leaf water potential and the stomatic resistance more intensely for clone 105 both comparing stressed plants and non-stressed plants. Consequently, the leaf temperatures had higher values for clone 433 on the stressed treatment. Thus, it can be concluded that there was a better performance in plants kept on a soil water potential of -0.03 MPa and a higher resistance to hydric stress for clone 105.
Resumo:
The conventional system for soil management and preparation has the intensive mechanization as its basic principle and that changes soil properties, especially physical ones, faster and significantly. This study aimed to obtain and compare physical properties such as distribution of particle sizes, density, distribution of pore sizes, curves of water retention and degradation index of a Red Latosol, under intensive cultivation and no-cultivation for six years. Soil samples were collected at depths of 0.1, 0.2, 0.3, 0.4, 0.6, 0.8 and 1.0 m. There was a clay increment as a result of cultivated soil increase. The no-till soil density decreased as depth increased; however, in the arable layer (0.3 m) of the cultivated soil, the opposite was verified. The largest volume of pores was verified in the cultivated soil, especially in the superficial layers. In the smallest applied tension (0.001 MPa), the cultivated soil retained more water; however, starting from 0.033 MPa, the highest humidity values occurred in the no-till soil. The highest degradation index was observed at a depth of 0.1 m in no-till soil. However, that value was superior (0.020) to what is physically considered very poor soil.
Resumo:
Objective: To determine the accuracy of the variables related to the fixed-height stair-climbing test (SCT) using maximal oxygen uptake (V̇O 2 max) as the gold standard. Methods: The SCT was performed on a staircase consisting of 6 flights (72 steps; 12.16 m total height), with verbal encouragement, in 51 patients. Stair-climbing time was measured, the variables 'work' and 'power' also being calculated. The V̇O2 max was measured using ergospirometry according to the Balke protocol. We calculated the Pearson linear correlation (r), as well as the values of p, between the SCT variables and V̇O2 max. To determine accuracy, the V̇O 2 max cut-off point was set at 25 mL/kg/min, and individuals were classified as normal or altered. The cut-off points for the SCT variables were determined using the receiver operating characteristic curve. The Kappa statistic (k) was used in order to assess concordance. Results: The following values were obtained for the variable 'time': cut-off point = 40 s; mean = 41 ± 15.5 s; r = -0.707; p < 0.005; specificity = 89%; sensibility = 83%; accuracy = 86%; and k = 0.724. For 'power', the values obtained were as follows: cut-off point = 200 w; mean = 222.3 ± 95.2 w; r = 0.515; p < 0.005; specificity = 67%; sensibility= 75%; accuracy = 71%; and k = 0.414. Since the correlation between the variable 'work' and V̇O2 max was not significant, that variable was discarded. Conclusion: Of the SCT variables tested, using V̇O2 max as the gold standard, the variable 'time' was the most accurate.
Resumo:
The goal of this experiment was to study the latent and sensible heat variation determined by Bowen ratio from an irrigated soybean crop. A micrometeorological station with vertical displacement was constructed to maintain the same level of all measures over the canopy. The station was installed in the center of the crop, and it was over 130 m away from the main edge of the predominant wind direction. Fluxes were calculated by vertical temperature gradient determined at 0.15 and 1.15 m over the canopy. The latent heat flux was the mean energy consumer when the canopy covered the soil totally, and there were good soil water conditions. The sensible heat flux was greater when the soil was not totally covered by the canopy. The canopy was essential on the amount of latent heat dissipated by the crop.
Resumo:
An experiment with four treatments was carried out on the experimental area of ADEI to compare three methods of water use requirement: ETc (T1) - irrigation based on crop evapotranspiration (ETc); Tensiometers (T2 and T3) - irrigations were made through reading of tensiometers installed at 40 cm deep and, Control (T4) - only one irrigation to promote the seedlings emergence. Both Class A pan and soil water depletion methods presented good results when the crop was developed without restraint of water. The Katerji method can be utilized in conditions of water restriction. Irrigation frequency was more important than amount of applied water for higher yield.
Resumo:
The studies were developed with plants of Eucalyptus urograndis under greenhouse conditions, at Paulista State University (UNESP), Botucatu - SP, from March to July, 2005. The objective was to evaluate hydric stress influence on morphological and physiological characteristics of plants in clayay (1) and medium (2) soil texture. Two water treatment were used: -0.03 and -1.5 MPa minimum soil water potentials (□w). Plants from soil 2 and - 1.5MPa showed 43% reduction on leaf área, 34% on base stem diameter, 54% on aerial vegetal dry matter and plants from soil 1 presented 42.3% reduction on leaf área, 39,5% base stem diameter and 42% dry matter root reduction in relation to -0.03 MPa. The lowest leaf water potential (□f) value was-17.166 MPa on □w = -1.5 MPa and soil 2 and the greatest one on soil 1 and □w = -0.03 MPa., -6.766 MPa. The treatment -0.03MPa showed about 11,3% higher transpiration values than those plants from -1.5MPa. The higher Rs value (2.149 s.cm-1) occurred on plants under -1.5MPa and soil 2. There was significant correlation between Tf and Rs, and the treatmens from medium soil were more sensitive, reaching until 32°C.
Resumo:
We examined the relationships between topography, soil properties and tree species composition in a Neotropical swamp forest in southeastern Brazil. Plots were sampled in the forest, encompassing three different soil ground water regimes along the topographical declivity. All non-climbing plant individuals with trunk height >1.3 m were sampled. A canonical correspondence analysis-CCA-of the species-environmental relationships grouped tree species according to drainage and chemical soil conditions. A total of 86 species were found, being 77 species in the inferior, 40 species in the intermediate and 35 species in the superior topographic section. Some species were among the 10 most abundant ones, both in the overall sampled area and in each topographical section, with alternation events occurring only with their abundance position. However, substantial differences in floristic composition between sections were detected in a fine spatial scale, due to higher number of species, diversity index (H′) and species unique (exclusives) in the inferior topographic section. These higher values can be attributed to its higher spatial heterogeneity that included better drained and seasonally waterlogged soils, higher soil fertility and lower acidity. The increase of the soil water saturation and the uniform conditions derived from the superficial water layer has led to a lower number of species and an increase on the palm trees abundance in the intermediate and superior sections. Our results showed that at a small spatial scale niche differentiation must be an important factor related to the increase of the local diversity. The wide distribution of the most abundant species in the studied area and the increase of local diversity corroborate the pattern of distribution of species in larger scales of swamp forests, in which the most abundant species repeat themselves in high densities in different remnants. However, the floristic composition of each remnant is strongly variable, contributing to the increase of regional diversity. © 2008 Springer Science+Business Media B.V.
Resumo:
Although the management of the coffee crop is well established in Brazil, there is still room for its improvement in relation natural resources available in each region, aiming the increase in productivity. Here are presented results regarding the fate of the fertilizer nitrogen (N) applied to a coffee plantation related to the prevailing soil water conditions. Soil water balances are discussed, which allowed evaluation of the root distribution, determinations of the crop coefficient and of the soil water conditions during the development of the crop. Approximately, 60% of the root system was distributed in the 0-0.3 m soil layer and the average crop coefficient was 1.1 for 3 to 5 year old plants. Using an N label, the 15N, it was possible to study the distribution of N in the plant and in the soil and establishes general N balances, which also include losses like leaching and volatilization. After two years of ammonium sulfate application, at rates of 280 (1st year) and 350 (2nd year) kg.ha-1 of N, in four equal application performed during the period of positive growth rate, the recuperation of fertilizer N were 19.1% by the aerial plant part and 9.4% by the roots, 12.6% remained in the soil and 11.2% in the litter; 0.9% was lost by volatilization and 2.3% by leaching; 26.3% was exported through harvesting and 18.2% remained in non evaluated compartments. From the applied 630 kg.ha -1 of N during the two years, 180 kg.ha -1 of N were found in the plant (shoot and root), which corresponds to 28.6%; 150 kg.ha -1 of N remained available for the next years(soil and litter), and only 20 kg.ha -1 of N were effectively lost (volatilization and leaching).
Resumo:
No tillage management is widely used by the Brazilian farmers and technicians like a soil conservation system, which reduces the soil losses by water erosion, increasing the infiltrated and stored water in soil, warranting environmental sustainability. No-tillage system does not invert the soil; it causes the creation of a compacted layer. The samples were taken in the agricultural year 2005/2006 in an Oxisoil at Selviria (MS/Brazil). The tillage management in the last 15 years was no-tillage system with crop rotation (maize -Zea mays L./bean - Phaseolus vulgaris L.). The analyzed soil physical properties were bulk density (BS), gravimetric water content (U) and mechanical resistance to penetration (RP) at three depths: 0-0.10 m, 0.10-0.20 m and 0.20-0.30 m. The samples were taken in a mesh with 117 sampled points covering an area of 0.16 ha. It was investigated the existence of compacted soil layer, using the mechanical resistance to penetration to 0.60 m depth with soil water content at field capacity. The data shows low coefficient of variation, except the resistance penetration data. Bulk density and gravimetric water content has a normal distribution. Only resistance to penetration at 0.10-0.20 m depth layer has a normal distribution. The correlation between different properties was low. The bulk density increases with depth; the increase of the values of soil bulk density are consistent with data in other papers, indicating there are not compaction problems for the crop development at the study area. Most of the values of resistance to penetration are lower than 2 MPa, being this value restrictive for root development. The analysis of resistance to penetration profile 0 to 0.60 m shows a compacted layer between 0.20-0.30 m. This compacted layer was caused by the conventional tillage system used at this area before the use of no-tillage system. The soil bulk density has higher values at the upper area, that it shows higher values of soil compaction. Although the values of bulk density and resistance to penetration are high, the area does not show great problems of soil compaction.
Resumo:
The scope of this experiment is to study the influence of soil water potential on lettuce productivity, particularly in relation to deficit and excess of water. Four lettuce cultivars (Americana, Roxa, Crespa and Mimosa), four minimum soil water potential (-0,001, -0,005, -0,012 and 0,022 MPa) and three replicates in experimental randomized design. The results allowed concluding that the -0,012 MPa has the tendency to produce the highest green mass among her soil water potential applied. The Mimosa showed the tendency to produce the highest evapotranspiration among the cultivars. The cultivars Americana e -0,05 MPa was the best combination (148,33g) the worst was the Roxa and -0,022 MPa minimum soil water potential.
Resumo:
The objective of this work was to study the dimensional parameters of the drainage net using 12 third-order ramification hydrological watersheds: 4 watersheds per soil unit (LVA, RL and RQ). The soil distinction was realized using ''t'' test to verify the orthogonal contrast among three soil averages and the grouping analysis and mean components. The results showed that the multivariance analysis was not able to discriminate three soils using the dimensional analysis. The t test of this isolated variable allowed discriminating RQ soil from LVA and RL soil units; but it was not sensitive to discriminate the LVA soil and RL unit.