914 resultados para Soil drying effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photons scattered by the Compton effect can be used to characterize the physical properties of a given sample due to the influence that the electron density exerts on the number of scattered photons. However, scattering measurements involve experimental and physical factors that must be carefully analyzed to predict uncertainty in the detection of Compton photons. This paper presents a method for the optimization of the geometrical parameters of an experimental arrangement for Compton scattering analysis, based on its relations with the energy and incident flux of the X-ray photons. In addition, the tool enables the statistical analysis of the information displayed and includes the coefficient of variation (CV) measurement for a comparative evaluation of the physical parameters of the model established for the simulation. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow of sediment from cropped land is the main pollutant of water sources in rural areas. Due to this fact, it is necessary to develop and implement technologies that will reduce water and sediment discharges. Accordingly, an experiment was conducted in the Department of Biosystems Engineering - ESALQ / USP, Piracicaba - SP with the objective to evaluate the effect of different soil cover (bean, grass and bare ground) and erosion control practices (wide base terraces and infiltration furrows in slopes (no practices to control erosion)) while measuring water losses in runoff. The statistical design adopted was randomized blocks in a 3x3 factorial scheme resulting in 9 treatments with 3 replicates (blocks). The period of rainfall data collection was December 6, 2007 to April 11, 2008. A 21.1 cm diameter rain gauge was installed in the experimental area. Terraces were the most efficient practices for reducing erosion losses in the treatments with infiltration furrows being better than the control treatment. Bean was more effective than grass in reducing erosion. Bare ground was the least efficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methane (CH4) emission from agricultural soils increases dramatically as a result of deleterious effect of soil disturbance and nitrogen fertilization on methanotrophic organisms; however, few studies have attempted to evaluate the potential of long-term conservation management systems to mitigate CH4 emissions in tropical and subtropical soils. This study aimed to evaluate the long-term effect (>19 years) of no-till grass- and legume-based cropping systems on annual soil CH4 fluxes in a formerly degraded Acrisol in Southern Brazil. Air sampling was carried out using static chambers and CH4 analysis by gas chromatography. Analysis of historical data set of the experiment evidenced a remarkable effect of high C- and N-input cropping systems on the improvement of biological, chemical, and physical characteristics of this no-tilled soil. Soil CH4 fluxes, which represent a net balance between consumption (-) and production (+) of CH4 in soil, varied from -40 +/- 2 to +62 +/- 78 mu g C m(-2) h(-1). Mean weighted contents of ammonium (NH4+-N) and dissolved organic carbon (DOC) in soil had a positive relationship with accumulated soil CH4 fluxes in the post-management period (r(2) = 0.95, p = 0.05), suggesting an additive effect of these nutrients in suppressing CH4 oxidation and stimulating methanogenesis, respectively, in legume-based cropping systems with high biomass input. Annual CH4 fluxes ranged from -50 +/- 610 to +994 +/- 105 g C ha(-1), which were inversely related to annual biomass-C input (r(2) = 0.99, p = 0.003), with the exception of the cropping system containing pigeon pea, a summer legume that had the highest biologically fixed N input (>300 kg ha(-1) yr(-1)). Our results evidenced a small effect of conservation management systems on decreasing CH4 emissions from soil, despite their significant effect restoring soil quality. We hypothesized that soil CH4 uptake strength has been off-set by an injurious effect of biologically fixed N in legume-based cropping systems on soil methanotrophic microbiota, and by the methanogenesis increase as a result of the O-2 depletion in niches of high biological activity in the surface layer of the no-tillage soil. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in Sao Carlos (Fazenda Canchim), in Sao Paulo State, Brazil. Experimental plots of 33 m(2) were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e. g., soil type, declivity, slope length, among others not analyzed in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microencapsulation of Lippia sidoides extracts in blends of carbohydrates was investigated. The extraction conditions were determined through a 2(2) factorial design. The effects of the plant:solvent ratio (A - 7.5:100 and 15:100 m/m) and the extraction time (B - 30 and 90 min) on thymol content of extractive solutions were evaluated, using a 2:1 (v/v) of ethanol:water at a temperature of 50 degrees C, as a solvent system. The selected extract was subjected to spray drying. Blends of maltodextrin and gum arabic at different proportions (4:1; 3:2; 2:3; 0:1) (m/m) were used as encapsulating material. The protective effects of the maltodextrin and gum arabic blends were evaluated by determination of the thymol retention in the dried product, which ranged from 70.2 to 84.2% (related to the content in the extractive solution). An increase in the gum arabic to maltodextrin (DE10) ratio has positive effect on thymol retention. L. sidoides extracts and spray-dried products showed antifungal activity against tested fungal strains (Candida albicans - ATCC 64548, Candida glabrata - ATCC 90030, Candida krusei - ATCC 6258, and Candida parapsilosis - ATCC 22019), evidencing their potential as a natural antifungal agent for medicinal, food, and cosmeceutical purposes. (C) 2012 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of tannery sludge application on soil microbial community and diversity is poorly understood. We studied the microbial community in an agricultural soil following two applications (2006 and 2007) of tannery sludge with annual application rates of 0.0,2.3 and 22.6 Mg ha(-1). The soil was sampled 12 and 271 days after the second (2007) application. Community structure was assessed via a phospholipid fatty acid analysis, and the physiological profile of the soil microbial community via the Biolog method. Tannery sludge application changed soil chemical properties, increasing the soil pH and electrical conductivity as well as available P and mineral N concentrations. The higher sludge application rate changed the community structure and the physiological profile of the microbial community at both sampling dates. However, there is no clear link between community structure and carbon substrate utilization. According to the Distance Based Linear Models Analysis, the fatty acids 16:0 and 117:0 together contributed 84% to the observed PLFA patterns, whereas the chemical properties available P, mineral N, and Ca, and pH together contributed 54%. At 12 days, tannery sludge application increased the average well color development from 0.46 to 0.87 after 48 h, and reduced the time elapsed before reaching the midpoint carbon substrate utilization (s) from 71 to 44 h, an effect still apparent nine months after application of the higher sludge application rate. The dominant signature fatty acids and kinetic parameters (r and s) were correlated to the concentrations of available P. Ca, mineral N, pH and EC. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DISTRIBUTION OF NITROGEN AMMONIUM SULFATE (N-15) SOIL-PLANT SYSTEM IN A NO-TILLAGE CROP SUCCESSION The N use by maize (Zea mays, L.) is affected by N-fertilizer levels. This study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of N use by maize in a crop succession, based on N-15-labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signalgrass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of N rates of 60, 120 and 180 kg ha(-1) in the form of labeled N-15 ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated N; fertilizer-derived N in corn plants and pasture; fertilizer-derived N in the soil; and recovery of fertilizer-N by plants and soil were evaluated. The highest uptake of fertilizer N by corn was observed after application of 120 kg ha(-1) N and the residual effect of N fertilizer on subsequent corn and Brachiaria was highest after application of 180 kg ha(-1) N. After the crop succession, soil N recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha(-1) N.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Euterpe edulis is an endangered species due to palm heart overharvesting, the most important non-timber forest product of the Brazilian Atlantic Forest, and fruit exploitation has been introduced as a low impacting alternative. However, E. edulis is a keystone species for frugivores birds, and even the impact of fruit exploitation needs to be better investigated. Since this species occurs over contrasting habitats, the establishment of site-specific standards and limits for exploitation may also be essential to achieve truly sustainable management. In this context, we sought to investigate how soil chemical composition would potentially affect E. edulis (Arecaceae) palm heart and fruit exploitation considering current standards of management. We studied natural populations found in Restinga Forest and Atlantic Rainforest remnants established within Natural Reserves of Sao Paulo State, SE Brazil, where 10.24 ha permanent plots, composed of a grid of 256 subplots (20 m x 20 m), were located. In each of these subplots, we evaluated soil chemical composition and diameter at breast height of E. edulis individuals. Additionally, we evaluated fruit yield in 2008 and 2009 in 20 individuals per year. The Atlantic Rainforest population had a much higher proportion of larger diameter individuals than the population from the Restinga Forest, as a result of habitat-mediated effects, especially those related to soil. Sodium and potassium concentration in Restinga Forest soils, which have strong negative and positive effect on palm growth, respectively, played a key role in determining those differences. Overall, the number of fruits that could be exploited in the Atlantic Rainforest was four times higher than in Restinga Forest. If current rules for palm heart and fruit harvesting were followed without any restriction to different habitats, Restinga Forest populations are under severe threat, as this study shows that they are not suitable for sustainable management of both fruits and palm heart. Hence, a habitat-specific approach of sustainable management is needed for this species in order to respect the demographic and ecological dynamics of each population to be managed. These findings suggest that any effort to create general management standards of low impacting harvesting may be unsuccessful if the species of interest occur over a wide range of ecosystems. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to determine the impact of three levels of [CO2] and two levels of soil-nutrient availability on the growth and physiological responses of two tropical tree species differing in their ecological group: Croton urucurana Baillon, a pioneer (P), and also Cariniana legalis (Martius) Kuntze, a late succession (LS). We aimed to test the hypothesis that P species have stronger response to elevated [CO2] than LS species as a result of differences in photosynthetic capacity and growth kinetics between both functional groups. Seedlings of both species were grown in open-top-chambers under high (HN) or low (LN) soil-nutrient supply and exposed to ambient (380 mu mol mol(-1)) or elevated (570 and 760 mu mol mol(-1)) [CO2]. Measurements of gas exchange, chlorophyll a fluorescence, seedling biomass and allocation were made after 70 days of treatment. Results suggest that elevated [CO2] significantly enhances the photosynthetic rates (A) and biomass production in the seedlings of both species, but that soil-nutrient supply has the potential to modify the response of young tropical trees to elevated [CO2]. In relation to plants grown in ambient [CO2], the P species grown under 760 mu mol mol(-1) [CO2] showed increases of 28% and 91% in A when grown in LN and HN, respectively. In P species grown under 570 mu mol mol(-1) [CO2], A increased by 16% under HN, but there was no effect in LN. In LS species, the enhancement of A by effect of 760 mu mol mol(-1) [CO2] was 30% and 70% in LN and HN, respectively. The exposure to 570 mu mol mol(-1) [CO2] stimulated A by 31% in HN, but was no effect in LN. Reductions in stomatal conductance (g(s)) and transpiration (E), as a result of elevated [CO2] were observed. Increasing the nutrient supply from low to high increased both the maximum rate of carboxylation (V-cmax) and maximum potential rate of electron transport (J(max)). As the level of [CO2] increased, both the V-cmax and the J(max) were found to decrease, whereas the J(max)/V-cmax ratio increased. In the LS species, the maximum efficiency of PSII (F-v/F-m) was higher in the 760 mu mol mol(-1) [CO2] treatment relative to other [CO2] treatments. The results suggest that when grown under HN and the highest [CO2], the performance of the P species C. urucurana, in terms of photosynthesis and biomass enhancement, is better than the LS species C. legalis. However, a larger biomass is allocated to roots when C. legalis seedlings were exposed to elevated [CO2]. This response would be an important strategy for plant survival and productivity of the LS species under drought stresses conditions on tropical environments in a global-change scenario. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The knockdown and toxic effects of insecticides of different chemical groups and modes of action registered for citrus in Brazil were investigated for effective control of Bucephalogonia xanthophis, a sharpshooter vector of Xylella fastidiosa in citrus. The active ingredients dimethoate (1.2 mL/1.2L), imidacloprid (0.24 mL/1.2L) and lambda-cyhalothrin (0.24 mL/1.2L), as well as a control (water), were sprayed onto branches of potted-citrus nursery trees to evaluate the effect of residual contact. The insects were confined on sprayed branches by using sleeve cages, in groups of 10 per branch (5 branches/treatment). Lambdacyhalothrin showed a knockdown effect on B. xanthophis (>70% mortality within 2 h of exposure), and the residues were effective for approximately one wk. Imidacloprid, lambdacyhalothrin and dimethoate suppressed the vector populations for up to 3 wk after application, when the insects were exposed to sprayed plants for at least 24 h. In another experiment, 2 neonicotinoid insecticides (thiamethoxam and imidacloprid) were applied by soil drench to potted nursery trees, in order to study their systemic effect, i.e., mortality by ingestion on sharpshooter adults. Thiamethoxam and imidacloprid effectively controlled the vectors at all concentrations tested, when the insects were exposed to treated plants for 24 h (>80% mortality) or 48 h (near 100% mortality). The knockdown effect of thiamethoxam and lambda-cyhalothrin might be particularly important to prevent vector transmission of X. fastidiosa in citrus groves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active pharmaceutical ingredients have very strict quality requirements; minor changes in the physical and chemical properties of pharmaceuticals can adversely affect the dissolution rate and therefore the bioavailability of a given drug. Accordingly, the aim of the present study was to investigate the effect of spray drying on the physical and in vitro dissolution properties of four different active pharmaceutical ingredients, namely carbamazepine, indomethacin, piroxicam, and nifedipine. Each drug was dispersed in a solution of ethanol and water (70:30) and subjected to single-step spray drying using similar operational conditions. A complete characterization of the spray-dried drugs was performed via differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), particle size distribution analysis, solubility analysis, and an in vitro dissolution study. The results from the thermal analysis and X-ray diffraction showed that, except for carbamazepine, no chemical modifications occurred as a result of spray drying. Moreover, the particle size distribution of all the spray-dried drugs significantly decreased. In addition, SEM images showed that most of the particles had an irregular shape. There was no significant improvement in the solubility of the spray-dried drugs compared with the unprocessed compounds; however, in general, the dissolution rates of the spray-dried drugs showed a remarkable improvement over their non-spray-dried counterparts. Therefore, the results from this study demonstrate that a single spray-drying step may lead to changes in the physical properties and dissolution characteristics of drugs and thus improve their therapeutic action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Máster en Oceanografía

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil is a critically important component of the earth’s biosphere. Developing agricultural production systems able to conserve soil quality is essential to guarantee the current and future capacity of soil to provide goods and services. This study investigates the potential of microbial and biochemical parameters to be used as early and sensitive soil quality indicators. Their ability to differentiate plots under contrasting fertilization regimes is evaluated based also on their sensitivity to seasonal fluctuations of environmental conditions and on their relationship with soil chemical parameters. Further, the study addresses some of the critical methodological aspects of microplate-based fluorimetric enzyme assays, in order to optimize assay conditions and evaluate their suitability to be used as a toll to asses soil quality. The study was based on a long-term field experiment established in 1966 in the Po valley (Italy). The soil was cropped with maize (Z. mays L.) and winter wheat (T. aestivum L.) and received no organic fertilization, crop residue or manure, in combination with increasing levels of mineral N fertilizer. The soil microbiota responded to manure amendment increasing it biomass and activity and changing its community composition. Crop residue effect was much more limited. Mineral N fertilization stimulated crop residue mineralization, shifted microbial community composition and influenced N and P cycling enzyme activities. Seasonal fluctuations of environmental factors affected the soil microbiota. However microbial and biochemical parameters seasonality did not hamper the identification of fertilization-induced effects. Soil microbial community abundance, function and composition appeared to be strongly related to soil organic matter content and composition, confirming the close link existing between these soil quality indicators. Microplate-based fluorimetric enzyme assays showed potential to be used as fast and throughput toll to asses soil quality, but required proper optimization of the assay conditions for a precise estimation of enzymes maximum potential activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The European renewable energy directive 2009/28/EC (E.C. 2009) provides a legislative framework for reducing GHG emissions by 20%, while achieving a 20% share of energy from renewable sources by 2020. Perennial energy crops could significantly contribute to limit GHG emissions through replacing equivalent fossil fuels and by sequestering a considerable amount of carbon into the soil through the large amounts of belowground biomass produced. The objective of this study is to evaluate the effects of land use change that perennial energy crops have on croplands (switchgrass) and marginal grasslands (miscanthus). For that purpose above and belowground biomass, SOC variation and Net Ecosystem Exchange were evaluated after five years of growth. At aboveground level both crops produced high biomass under cropland conditions as well as under marginal soils. At belowground level they also produced large amounts of biomass, but no significant influences on SOC in the upper layer (0-30 cm) were found. This is probably because of the "priming effect" that caused fast carbon substitution. In switchgrass only it was found a significant SOC increase in deeper layers (30-60 cm), while in the whole soil profile (0-60 cm) SOC increased from 42 to 51 ha-1. However, the short experimental periods (for both switchgrass and miscanthus), in which land use change was evaluated, do not permit to determine the real capacity of perennial energy crops to accumulate SOC. In conclusion the large amounts of belowground biomass enhanced the SOC dynamic through the priming effect resulting in increased SOC in cropland but not in marginal grassland.