994 resultados para Soaje Ramos, Guido


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesi ha lo scopo di illustrare l’efficacia di nuove tecniche per l’esecuzione della prova triassiale su sabbia. Sono state analizzate le tecniche di preparazione dei provini moist-tamping e mini proctor e l’efficacia del flushing di anidride carbonica e acua per realizzare la saturazione di provini di sabbia. Si è messo in evidenza modalità di esecuzione delle nuove procedure, effetti che producono, pregi e difetti per mezzo di una sperimentazione condotta con la cella triassiale del laboratorio di geotecnica del DISTART.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slope failure occurs in many areas throughout the world and it becomes an important problem when it interferes with human activity, in which disasters provoke loss of life and property damage. In this research we investigate the slope failure through the centrifuge modeling, where a reduced-scale model, N times smaller than the full-scale (prototype), is used whereas the acceleration is increased by N times (compared with the gravity acceleration) to preserve the stress and the strain behavior. The aims of this research “Centrifuge modeling of sandy slopes” are in extreme synthesis: 1) test the reliability of the centrifuge modeling as a tool to investigate the behavior of a sandy slope failure; 2) understand how the failure mechanism is affected by changing the slope angle and obtain useful information for the design. In order to achieve this scope we arranged the work as follows: Chapter one: centrifuge modeling of slope failure. In this chapter we provide a general view about the context in which we are working on. Basically we explain what is a slope failure, how it happens and which are the tools available to investigate this phenomenon. Afterwards we introduce the technology used to study this topic, that is the geotechnical centrifuge. Chapter two: testing apparatus. In the first section of this chapter we describe all the procedures and facilities used to perform a test in the centrifuge. Then we explain the characteristics of the soil (Nevada sand), like the dry unit weight, water content, relative density, and its strength parameters (c,φ), which have been calculated in laboratory through the triaxial test. Chapter three: centrifuge tests. In this part of the document are presented all the results from the tests done in centrifuge. When we talk about results we refer to the acceleration at failure for each model tested and its failure surface. In our case study we tested models with the same soil and geometric characteristics but different angles. The angles tested in this research were: 60°, 75° and 90°. Chapter four: slope stability analysis. We introduce the features and the concept of the software: ReSSA (2.0). This software allows us to calculate the theoretical failure surfaces of the prototypes. Then we show in this section the comparisons between the experimental failure surfaces of the prototype, traced in the laboratory, and the one calculated by the software. Chapter five: conclusion. The conclusion of the research presents the results obtained in relation to the two main aims, mentioned above.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion channels are protein molecules, embedded in the lipid bilayer of the cell membranes. They act as powerful sensing elements switching chemicalphysical stimuli into ion-fluxes. At a glance, ion channels are water-filled pores, which can open and close in response to different stimuli (gating), and one once open select the permeating ion species (selectivity). They play a crucial role in several physiological functions, like nerve transmission, muscular contraction, and secretion. Besides, ion channels can be used in technological applications for different purpose (sensing of organic molecules, DNA sequencing). As a result, there is remarkable interest in understanding the molecular determinants of the channel functioning. Nowadays, both the functional and the structural characteristics of ion channels can be experimentally solved. The purpose of this thesis was to investigate the structure-function relation in ion channels, by computational techniques. Most of the analyses focused on the mechanisms of ion conduction, and the numerical methodologies to compute the channel conductance. The standard techniques for atomistic simulation of complex molecular systems (Molecular Dynamics) cannot be routinely used to calculate ion fluxes in membrane channels, because of the high computational resources needed. The main step forward of the PhD research activity was the development of a computational algorithm for the calculation of ion fluxes in protein channels. The algorithm - based on the electrodiffusion theory - is computational inexpensive, and was used for an extensive analysis on the molecular determinants of the channel conductance. The first record of ion-fluxes through a single protein channel dates back to 1976, and since then measuring the single channel conductance has become a standard experimental procedure. Chapter 1 introduces ion channels, and the experimental techniques used to measure the channel currents. The abundance of functional data (channel currents) does not match with an equal abundance of structural data. The bacterial potassium channel KcsA was the first selective ion channels to be experimentally solved (1998), and after KcsA the structures of four different potassium channels were revealed. These experimental data inspired a new era in ion channel modeling. Once the atomic structures of channels are known, it is possible to define mathematical models based on physical descriptions of the molecular systems. These physically based models can provide an atomic description of ion channel functioning, and predict the effect of structural changes. Chapter 2 introduces the computation methods used throughout the thesis to model ion channels functioning at the atomic level. In Chapter 3 and Chapter 4 the ion conduction through potassium channels is analyzed, by an approach based on the Poisson-Nernst-Planck electrodiffusion theory. In the electrodiffusion theory ion conduction is modeled by the drift-diffusion equations, thus describing the ion distributions by continuum functions. The numerical solver of the Poisson- Nernst-Planck equations was tested in the KcsA potassium channel (Chapter 3), and then used to analyze how the atomic structure of the intracellular vestibule of potassium channels affects the conductance (Chapter 4). As a major result, a correlation between the channel conductance and the potassium concentration in the intracellular vestibule emerged. The atomic structure of the channel modulates the potassium concentration in the vestibule, thus its conductance. This mechanism explains the phenotype of the BK potassium channels, a sub-family of potassium channels with high single channel conductance. The functional role of the intracellular vestibule is also the subject of Chapter 5, where the affinity of the potassium channels hEag1 (involved in tumour-cell proliferation) and hErg (important in the cardiac cycle) for several pharmaceutical drugs was compared. Both experimental measurements and molecular modeling were used in order to identify differences in the blocking mechanism of the two channels, which could be exploited in the synthesis of selective blockers. The experimental data pointed out the different role of residue mutations in the blockage of hEag1 and hErg, and the molecular modeling provided a possible explanation based on different binding sites in the intracellular vestibule. Modeling ion channels at the molecular levels relates the functioning of a channel to its atomic structure (Chapters 3-5), and can also be useful to predict the structure of ion channels (Chapter 6-7). In Chapter 6 the structure of the KcsA potassium channel depleted from potassium ions is analyzed by molecular dynamics simulations. Recently, a surprisingly high osmotic permeability of the KcsA channel was experimentally measured. All the available crystallographic structure of KcsA refers to a channel occupied by potassium ions. To conduct water molecules potassium ions must be expelled from KcsA. The structure of the potassium-depleted KcsA channel and the mechanism of water permeation are still unknown, and have been investigated by numerical simulations. Molecular dynamics of KcsA identified a possible atomic structure of the potassium-depleted KcsA channel, and a mechanism for water permeation. The depletion from potassium ions is an extreme situation for potassium channels, unlikely in physiological conditions. However, the simulation of such an extreme condition could help to identify the structural conformations, so the functional states, accessible to potassium ion channels. The last chapter of the thesis deals with the atomic structure of the !- Hemolysin channel. !-Hemolysin is the major determinant of the Staphylococcus Aureus toxicity, and is also the prototype channel for a possible usage in technological applications. The atomic structure of !- Hemolysin was revealed by X-Ray crystallography, but several experimental evidences suggest the presence of an alternative atomic structure. This alternative structure was predicted, combining experimental measurements of single channel currents and numerical simulations. This thesis is organized in two parts, in the first part an overview on ion channels and on the numerical methods adopted throughout the thesis is provided, while the second part describes the research projects tackled in the course of the PhD programme. The aim of the research activity was to relate the functional characteristics of ion channels to their atomic structure. In presenting the different research projects, the role of numerical simulations to analyze the structure-function relation in ion channels is highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study deals with the protection of social rights in Europe and aims to outline the position currently held by these rights in the EU law. The first two chapters provide an overview of the regulatory framework in which the social rights lie, through the reorganisation of international sources. In particular the international instruments of protection of social rights are taken into account, both at the universal level, due to the activity of the United Nations Organisation and of its specialized agency, the International Labour Organization, and at a regional level, related to the activity of the Council of Europe. Finally an analysis of sources concludes with the reconstruction of the stages of the recognition of social rights in the EU. The second chapter describes the path followed by social rights in the EU: it examines the founding Treaties and subsequent amendments, the Charter of Fundamental Social Rights of Workers of 1989 and, in particularly, the Charter of Fundamental Rights of the European Union, the legal status of which was recently treated as the primary law by the Treaty of Lisbon signed in December 2007. The third chapter is, then, focused on the analysis of the substantive aspects of the recognition of the rights made by the EU: it provides a framework of the content and scope of the rights accepted in the Community law by the Charter of Fundamental Rights, which is an important contribution to the location of the social rights among the fundamental and indivisible rights of the person. In the last section of the work, attention is focused on the two profiles of effectiveness and justiciability of social rights, in order to understand the practical implications of the gradual creation of a system of protection of these rights at Community level. Under the first profile, the discussion is focused on the effectiveness in the general context of the mechanisms of implementation of the “second generation” rights, with particular attention to the new instruments and actors of social Europe and the effect of the procedures of soft law. Second part of chapter four, finally, deals with the judicial protection of rights in question. The limits of the jurisprudence of the European Union Court of Justice are more obvious exactly in the field of social rights, due to the gap between social rights and other fundamental rights. While, in fact, the Community Court ensures the maximum level of protection to human rights and fundamental freedoms, social rights are often degraded into mere aspirations of EU institutions and its Member States. That is, the sources in the social field (European Social Charter and Community Charter) represent only the base for interpretation and application of social provisions of secondary legislation, unlike the ECHR, which is considered by the Court part of Community law. Moreover, the Court of Justice is in the middle of the difficult comparison between social values and market rules, of which it considers the need to make a balance: despite hesitancy to recognise the juridical character of social rights, the need of protection of social interests has justified, indeed, certain restrictions to the free movement of goods, freedom to provide services or to Community competition law. The road towards the recognition and the full protection of social rights in the European Union law appears, however, still long and hard, as shown by the recent judgments Laval and Viking, in which the Community court, while enhancing the Nice Charter, has not given priority to fundamental social rights, giving them the role of limits (proportionate and justified) of economic freedoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aims to show the scope of environment impact due to tyre treatments. The study scrutinises a firm’s case, Marangoni S.p.A, which is one of the first pneumatics treatments firm with emphasis on disposed and recostructed exhausted pneumatics. In particular those pneumatic’s treatments are two: reconstruction (30% of the whole amount of the pneumatics given) and incineration (70% of the whole amount of the pneumatics given). With LCA methods (EcoIndicator 99, EPS 2000, EDIP 97, IMPACT 2002) it has been possible to value the impact on the environments in terms of human health, ecosystem quality and resources. In addition, comparison with the principal process and subsidiary processes within the main one has brought to highlight how some results could be understood in different way. This interpretation should bring politics and socials network to take decision in order to save our planet.