959 resultados para Slender beams


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the question about the velocity of signals carried by Bessel beams wave packets propagating in vacuum and having well defined wavefronts in time. We find that this problem in analogous to that of propagation of usual plane wave packets within dispersive media and conclude that the signal velocity cannot be superluminal. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a numerical model to perform non-linear analysis of building floor structures is proposed. The presented model is derived from the Kirchhoff-s plate bending formulation of the boundary element method (BENI) for zoned domains, in which the plate stiffness is modified by the presence of membrane effects. In this model, no approximation of the generalized forces along the interface is required and the compatibility and equilibrium conditions along interfaces are imposed at the integral equation level. In order to reduce the number of degrees of freedom, the Navier Bernoulli hypothesis is assumed to simplify the strain field for the thin sub-regions (rectangular beams). The non-linear formulation is obtained from the linear formulation by incorporating initial internal force fields, which are approximated by using the well-known cell sub-division. Then, the non-linear solution of algebraic equations is obtained by using the concept of the consistent tangent operator. The Von Mises criterion is adopted to govern the elasto-plastic material behaviour checked at points along the plate thickness and along the rectangular beam element axes. The numerical representations are accurately obtained by either computing analytically the element integrals or performing the numerical integration accurately using an appropriate sub-elementation scheme. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper was evaluated, using the software ANSYS, the stiffness (El) of the log-concrete composite beams, of section T, with connectors formed by bonded-in steel rods, type CA-50, disposed in X, with application of cyclical load. The stiffness of the system was evaluated through the simulation of bending tests, considered 1/2 beam, with cyclical shipment varying among 40 % and 5 % of the strength of the connection with the load relationship R=0,125, for a total of 10 load cycles applied. The numeric results show a good agreement with experimental tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the plate bending formulation of the boundary element method (BEM), based on the Reissner's hypothesis, is extended to the analysis of plates reinforced by rectangular beams. This composed structure is modelled by a zoned plate, being the beams represented by narrow sub-regions with larger thickness. The integral equations are derived by applying the weighted residual method to each sub-region, and summing them to get the equation for the whole plate. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to decrease the number of degrees of freedom, some approximations are considered for both displacements and tractions along the beam width. The accuracy of the proposed model is illustrated by simple examples whose exact solution are known as well as by more complex examples whose numerical results are compared with a well-known finite element code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the effects of niobium beam filtration on absorbed doses, on image density and contrast, and on photon spectra with conventional and high-frequency dental x-ray generators. Added niobium reduced entry and superficial absorbed doses in periapical radiography by 9% to 40% with film and digital image receptors, decreased the radiation necessary to produce a given image density on E-speed film and reduced image contrast on D- and E-speed films. As shown by increased half-value layers for aluminum, titanium, and copper and by pulse-height analyses of beam spectra, niobium increased average beam energy by 6% to 19%. Despite the benefits of adding niobium on patient dose reduction and on narrowing the beams' energy spectra, the beam can be overhardened. Adding niobium, therefore, strikes the best balance between radiation dose reduction and beam attenuation, with its risks of increased exposure times, motion blur, and diminished image contrast, when it is used at modest thicknesses (30 μm) and at lower kVp (70) settings. © 1995 Mosby-Year Book, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The slender catshark Schroedericthys tenuis Springer, 1966, originally described from two immature males, is redescribed on the basis of 12 specimens of both sexes, juveniles and adults (as well as the holotype and paratype). The supplementary specimens were collected off the northern coast of Brazil between Amapá and Pará states. Aspects of its external morphology, color pattern, dermal denticles, dentition, vertebral counts, and the cephalic, clasper and pectoral fin skeleton are described in detail and fully illustrated. These features are compared with those of congeneric species. Our observations support preliminary results of work in progress that S. maculatus Springer, 1966, S. tenuis and S. saurisqualus Soto, 2003 form a monophyletic group, mostly on the basis of neurocranial morphology, and that S. bivius (Smith, 1838) and S. chilensis (Guichenot, 1848) should be removed from Schroederichthys. Copyright © 2006 Magnolia Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glued-laminated lumber (glulam) technique is an efficient process for making rational use of wood. Fiber-Reinforced Polymers (FRPs) associated with glulam beams provide significant gains in terms of strength and stiffness, and also alter the mode of rupture of these structural elements. In this context, this paper presents a theoretical model for designing reinforced glulam beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Nailed Box Beam structural efficiency is directly dependent of the flange-web joint behavior, which determines the partial composition of the section, as the displacement between elements reduces the effective rigidity of the section and changes the stress distribution and the total displacement of the section. This work discusses the use of Nailed Plywood Box Beams in small span timber bridges, focusing on the reliability of the beam element. It is presented the results of tests carried out in 21 full scale Nailed Plywood Box Beams. The analysis of maximum load tests results shows that it presents a normal distribution, permitting the characteristic values calculation as the normal distribution theory specifies. The reliability of those elements was analyzed focusing on a timber bridge design, to estimate the failure probability in function of the load level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton radiation therapy is a precise form of radiation therapy, but the avoidance of damage to critical normal tissues and the prevention of geographical tumor misses require accurate knowledge of the dose delivered to the patient and the verification of his position demand a precise imaging technique. In proton therapy facilities, the X-ray Computed Tomography (xCT) is the preferred technique for the planning treatment of patients. This situation has been changing nowadays with the development of proton accelerators for health care and the increase in the number of treated patients. In fact, protons could be more efficient than xCT for this task. One essential difficulty in pCT image reconstruction systems came from the scattering of the protons inside the target due to the numerous small-angle deflections by nuclear Coulomb fields. The purpose of this study is the comparison of an analytical formulation for the determination of beam lateral deflection, based on Molière's theory and Rutherford scattering with Monte Carlo calculations by SRIM 2008 and MCNPX codes. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected. © 2010 IOP Publishing Ltd and SISSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear spring element of a vibration isolator should ideally possess high static and low dynamic stiffness. A buckled beam may be a good candidate to fulfil this requirement provided its internal resonance frequencies are high enough to achieve a wide frequency range of isolation. If a straight beam is used, there is a singularity in the force-displacement characteristic. To smooth this characteristic and eliminate the singularity at the buckling point, beams with initial constant curvature along their length are investigated here as an alternative to the buckled straight beam. Their force displacement characteristics are compared with different initial curvature and with a straight buckled beam. The minimum achievable dynamic stiffness with its corresponding static stiffness is compared for different initial curvatures. A case study is considered where the beams are optimized to isolate a one kilogram mass and to achieve a natural frequency of 1 Hz, considering small amplitudes of vibration. Resonance frequencies of the optimized beams for different curvature are presented. It is shown that an order of magnitude reduction in stiffness compared with a linear spring is achievable, while the internal resonance frequencies of the curved beam are high enough to achieve an acceptable frequency range of isolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a numerical approach to model the complex failure mechanisms that define the ultimate rotational capacity of reinforced concrete beams. The behavior in tension and compression is described by a constitutive damage model derived from a combination of two specific damage models [1]. The nonlinear behavior of the compressed region is treated by the compressive damage model based on the Drucker-Prager criterion written in terms of the effective stresses. The tensile damage model employs a failure criterion based on the strain energy associated with the positive part the effective stress tensor. This model is used to describe the behavior of very thin bands of strain localization, which are embedded in finite elements to represent multiple cracks that occur in the tensioned region [2]. The softening law establishes dissipation energy compatible with the fracture energy of the concrete. The reinforcing steel bars are modeled by truss elements with elastic-perfect plastic behavior. It is shown that the resulting approach is able to predict the different stages of the collapse mechanism of beams with distinct sizes and reinforcement ratios. The tensile damage model and the finite element embedded crack approach are able to describe the stiffness reduction due to concrete cracking in the tensile zone. The truss elements are able to reproduce the effects of steel yielding and, finally, the compressive damage model is able to describe the non-linear behavior of the compressive zone until the complete collapse of the beam due to crushing of concrete. The proposed approach is able to predict well the plastic rotation capacity of tested beams [3], including size-scale effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical rotor with a hard disk at the edge through the classical modal and complex analysis. The equation that rules the movement was obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element method was used to discretize the structure into hollow cylindrical elements with 12 degrees of freedom. Mass, stiffness and gyroscopic matrices were explained consistently. The classical modal analysis, usually applied to stationary structures, does not consider an important characteristic of rotating machinery which are the methods of forward and backward whirl. Initially, through the traditional modal analysis, axial and torsional natural frequencies were obtained in a static shaft, since they do not suffer the influence of gyroscopic effects. Later research was performed by complex modal analysis. This type of tool, based on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is not deformed. A finite element program was developed using MATLAB (TM) and numerical simulations were performed to validate this model. Natural frequencies and directional frequency forced response (dFRF) were obtained using the complex modal analysis for a simple vertical rotor and also for a typical drill string used in the construction of oil wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many new viscoelastic materials have been developed recently to help improve noise and vibration levels in mechanical structures for applications in automobile and aeronautical industry. The viscoelastic layer treatment applied to solid metal structures modifies two main properties which are related to the mass distribution and the damping mechanism. The other property controlling the dynamics of a mechanical system is the stiffness that does not change much with the viscoelastic material. The model of such system is usually complex, because the viscoelastic material can exhibit nonlinear behavior, in contrast with the many available tools for linear dynamics. In this work, the dynamic behavior of sandwich beam is modeled by finite element method using different element types which are then compared with experimental results developed in the laboratory for various beams with different viscoelastic layer materials. The finite element model is them updated to help understand the effects in the damping for various natural frequencies and the trade-off between attenuation and the mass add to the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to investigate the influence of storage time (0, 48 hours) of Pinus elliottii pieces and the tests to obtaining modulus of elasticity (static bending and transversal vibration) in glued laminated timber beams, produced with resorcinol based adhesive and 0.8 MPa compaction pressure. After pieces were properly prepared, part of them was used in immediate three manufacturing glulam beams, tested after adhesive cure, and part stored for 48 hours under a roof with a temperature of 25°C and relative humidity of 60% for subsequent manufacturing and testing three other glulam beams. Results of analysis of variance (ANOVA) revealed that the storage period was significant influence in modulus of elasticity obtained in static bending test (8% reduction from 0 to 48 hours). This not occurred with modulus of elasticity obtained by transversal vibration test (no significant influence). ANOVA results showed equivalence of means in both test procedures. New researches ire needed to better understand the investigated phenomenon, using new wood species, other storage conditions and a great number of samples.