938 resultados para Single-Stage Converters
Resumo:
Objectives Current evidence to support non-medical prescribing is predominantly qualitative, with little evaluation of accuracy, safety and appropriateness. Our aim was to evaluate a new model of service for the Australia healthcare system, of inpatient medication prescribing by a pharmacist in an elective surgery preadmission clinic (PAC) against usual care, using an endorsed performance framework. Design Single centre, randomised controlled, two-arm trial. Setting Elective surgery PAC in a Brisbane-based tertiary hospital. Participants 400 adults scheduled for elective surgery were randomised to intervention or control. Intervention A pharmacist generated the inpatient medication chart to reflect the patient's regular medication, made a plan for medication perioperatively and prescribed venous thromboembolism (VTE) prophylaxis. In the control arm, the medication chart was generated by the Resident Medical Officers. Outcome measures Primary outcome was frequency of omissions and prescribing errors when compared against the medication history. The clinical significance of omissions was also analysed. Secondary outcome was appropriateness of VTE prophylaxis prescribing. Results There were significantly less unintended omissions of medications: 11 of 887 (1.2%) intervention orders compared with 383 of 1217 (31.5%) control (p<0.001). There were significantly less prescribing errors involving selection of drug, dose or frequency: 2 in 857 (0.2%) intervention orders compared with 51 in 807 (6.3%) control (p<0.001). Orders with at least one component of the prescription missing, incorrect or unclear occurred in 208 of 904 (23%) intervention orders and 445 of 1034 (43%) controls (p<0.001). VTE prophylaxis on admission to the ward was appropriate in 93% of intervention patients and 90% controls (p=0.29). Conclusions Medication charts in the intervention arm contained fewer clinically significant omissions, and prescribing errors, when compared with controls. There was no difference in appropriateness of VTE prophylaxis on admission between the two groups.
Resumo:
Recent research from within a neo-Piagetian perspective proposes that novice programmers pass through the sensorimotor and preoperational stages before being able to reason at the concrete operational stage. However, academics traditionally teach and assess introductory programming as if students commence at the concrete operational stage. In this paper, we present results from a series of think aloud sessions with a single student, known by the pseudonym “Donald”. We conducted the sessions mainly over one semester, with an additional session three semesters later. Donald first manifested predominately sensorimotor reasoning, followed by preoperational reasoning, and finally concrete operational reasoning. This longitudinal think aloud study of Donald is the first direct observational evidence of a novice programmer progressing through the neo-Piagetian stages.
Resumo:
Introduction The culture in many team sports involves consumption of large amounts of alcohol after training/competition. The effect of such a practice on recovery processes underlying protein turnover in human skeletal muscle are unknown. We determined the effect of alcohol intake on rates of myofibrillar protein synthesis (MPS) following strenuous exercise with carbohydrate (CHO) or protein ingestion. Methods In a randomized cross-over design, 8 physically active males completed three experimental trials comprising resistance exercise (8×5 reps leg extension, 80% 1 repetition maximum) followed by continuous (30 min, 63% peak power output (PPO)) and high intensity interval (10×30 s, 110% PPO) cycling. Immediately, and 4 h post-exercise, subjects consumed either 500 mL of whey protein (25 g; PRO), alcohol (1.5 g·kg body mass−1, 12±2 standard drinks) co-ingested with protein (ALC-PRO), or an energy-matched quantity of carbohydrate also with alcohol (25 g maltodextrin; ALC-CHO). Subjects also consumed a CHO meal (1.5 g CHO·kg body mass−1) 2 h post-exercise. Muscle biopsies were taken at rest, 2 and 8 h post-exercise. Results Blood alcohol concentration was elevated above baseline with ALC-CHO and ALC-PRO throughout recovery (P<0.05). Phosphorylation of mTORSer2448 2 h after exercise was higher with PRO compared to ALC-PRO and ALC-CHO (P<0.05), while p70S6K phosphorylation was higher 2 h post-exercise with ALC-PRO and PRO compared to ALC-CHO (P<0.05). Rates of MPS increased above rest for all conditions (~29–109%, P<0.05). However, compared to PRO, there was a hierarchical reduction in MPS with ALC-PRO (24%, P<0.05) and with ALC-CHO (37%, P<0.05). Conclusion We provide novel data demonstrating that alcohol consumption reduces rates of MPS following a bout of concurrent exercise, even when co-ingested with protein. We conclude that alcohol ingestion suppresses the anabolic response in skeletal muscle and may therefore impair recovery and adaptation to training and/or subsequent performance.
Resumo:
The majority of non-small cell lung cancer (NSCLC) patients present with advanced disease and with a 5 year survival rate of <15% for these patients, treatment outcomes are considered extremely disappointing. Standard chemotherapy regimens provide some improvement to ~40% of patients. However, intrinsic and acquired chemoresistance are a significant problem and hinder sustained long term benefits of such treatments. Advances in proteomic and genomic profiling have increased our understanding of the aberrant molecular mechanisms that are driving an individual's tumour. The increased sensitivity of these technologies has enabled molecular profiling at the stage of initial biopsy thus paving the way for a more personalised approach to the treatment of cancer patients. Improvements in diagnostics together with a wave of new targeted small molecule inhibitors and monoclonal antibodies have revolutionised the treatment of cancer. To date there are essentially three targeted agents approved for clinical use in NSCLC. The tyrosine kinase inhibitor (TKI) erlotinib, which targets the epidermal growth factor receptor (EGFR) TK domain, has proven to be an effective treatment strategy in patients who harbour activating mutations in the EGFR TK domain. Bevacizumab a monoclonal antibody targeting the vascular endothelial growth factor (VEGF) can improve survival, response rates, and progression-free survival when used in combination with chemotherapy. Crizotinib, a small-molecule drug, inhibits the tyrosine kinase activity of the echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) fusion protein, resulting in decreased tumour cell growth, migration, and invasiveness in patients with locally advanced or metastatic NSCLC. The clinical relevance of several other targeted agents are under investigation in distinct molecular subsets of patients with key "driver" mutations including: KRAS, HER2, BRAF, MET, PIK3CA, AKT1,MAP2K1, ROS1 and RET. Often several pathways are activated simultaneously and crosstalk between pathways allows tumour cells to escape the inhibition of a single targeted agent. This chapter will explore the clinical development of currently available targeted therapies for NSCLC as well as those in clinical trials and will examine the synergy between cytotoxic therapies.
Resumo:
Electrocatalytic processes will undoubtedly be at the heart of energising future transportation and technology with the added importance of being able to create the necessary fuels required to do so in an environmentally friendly and cost effective manner. For this to be successful two almost mutually exclusive surface properties need to be reconciled, namely producing highly active/reactive surface sites that exhibit long term stability. This article reviews the various approaches which have been undertaken to study the elusive nature of these active sites on metal surfaces which are considered as adatoms or clusters of adatoms with low coordination number. This includes the pioneering studies at extended well defined stepped single crystal surfaces using cyclic voltammetry up to the highly sophisticated in situ electrochemical imaging techniques used to study chemically synthesised nanomaterials. By combining the information attained from single crystal surfaces, individual nanoparticles of defined size and shape, density functional theory calculations and new concepts such as mesoporous multimetallic thin films and single atom electrocatalysts new insights into the design and fabrication of materials with highly active but stable active sites can be achieved. The area of electrocatalysis is therefore not only a fascinating and exciting field in terms of realistic technological and economical benefits but also from the fundamental understanding that can be acquired by studying such an array of interesting materials.
Resumo:
BACKGROUND Experimental and epidemiologic evidence have suggested that chronic inflammation may play a critical role in endometrial carcinogenesis. METHODS To investigate this hypothesis, a two-stage study was carried out to evaluate single-nucleotide polymorphisms (SNP) in inflammatory pathway genes in association with endometrial cancer risk. In stage I, 64 candidate pathway genes were identified and 4,542 directly genotyped or imputed SNPs were analyzed among 832 endometrial cancer cases and 2,049 controls, using data from the Shanghai Endometrial Cancer Genetics Study. Linkage disequilibrium of stage I SNPs significantly associated with endometrial cancer (P < 0.05) indicated that the majority of associations could be linked to one of 24 distinct loci. One SNP from each of the 24 loci was then selected for follow-up genotyping. Of these, 21 SNPs were successfully designed and genotyped in stage II, which consisted of 10 additional studies including 6,604 endometrial cancer cases and 8,511 controls. RESULTS Five of the 21 SNPs had significant allelic odds ratios (ORs) and 95% confidence intervals (CI) as follows: FABP1, 0.92 (0.85-0.99); CXCL3, 1.16 (1.05-1.29); IL6, 1.08 (1.00-1.17); MSR1, 0.90 (0.82-0.98); and MMP9, 0.91 (0.87-0.97). Two of these polymorphisms were independently significant in the replication sample (rs352038 in CXCL3 and rs3918249 in MMP9). The association for the MMP9 polymorphism remained significant after Bonferroni correction and showed a significant association with endometrial cancer in both Asian- and European-ancestry samples. CONCLUSIONS These findings lend support to the hypothesis that genetic polymorphisms in genes involved in the inflammatory pathway may contribute to genetic susceptibility to endometrial cancer. Impact statement: This study adds to the growing evidence that inflammation plays an important role in endometrial carcinogenesis.
Resumo:
To minimise the number of load sheddings in a microgrid (MG) during autonomous operation, islanded neighbour MGs can be interconnected if they are on a self-healing network and an extra generation capacity is available in the distributed energy resources (DER) of one of the MGs. In this way, the total load in the system of interconnected MGs can be shared by all the DERs within those MGs. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and MG levels. In this study, first, a hierarchical control structure is discussed for interconnecting the neighbour autonomous MGs where the introduced primary control level is the main focus of this study. Through the developed primary control level, this study demonstrates how the parallel DERs in the system of multiple interconnected autonomous MGs can properly share the load of the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralised power sharing algorithm based on droop control. DER converters are controlled based on a per-phase technique instead of a conventional direct-quadratic transformation technique. In addition, linear quadratic regulator-based state feedback controllers, which are more stable than conventional proportional integrator controllers, are utilised to prevent instability and weak dynamic performances of the DERs when autonomous MGs are interconnected. The efficacy of the primary control level of the DERs in the system of multiple interconnected autonomous MGs is validated through the PSCAD/EMTDC simulations considering detailed dynamic models of DERs and converters.
Resumo:
For TREC Crowdsourcing 2011 (Stage 2) we propose a networkbased approach for assigning an indicative measure of worker trustworthiness in crowdsourced labelling tasks. Workers, the gold standard and worker/gold standard agreements are modelled as a network. For the purpose of worker trustworthiness assignment, a variant of the PageRank algorithm, named TurkRank, is used to adaptively combine evidence that suggests worker trustworthiness, i.e., agreement with other trustworthy co-workers and agreement with the gold standard. A single parameter controls the importance of co-worker agreement versus gold standard agreement. The TurkRank score calculated for each worker is incorporated with a worker-weighted mean label aggregation.
Resumo:
This study investigates grade eight girls’ use of status updates on Facebook in order to create identities online. Using sociologist Erving Goffman’s theory of self-presentation as a framework, Jones and Pittman’s subsequent strategies of self-presentation are used to discover the ways in which teenage girls use status updates in order to create identities online and manage audience impressions. Using a mixed methods design, the results showed that, while existing self-presentation strategies persist, social networking has created new means of self-presentation. This study adds to a growing pool of research regarding teens’ engagement with social networking websites to form identities.
Resumo:
Children from single-parent families fare more poorly on multiple outcomes than those in two-parent families. Most explanations for these differences assume that compromised parenting and parent mental health play a central role. This chapter explores the contribution of a range of factors to the parenting and mental health of single mothers using data from approximately 1000 Australian single mothers with a child aged 4–5 or 8–9 years. The findings show that single mothers are more likely than couple mothers to experience parenting and mental health difficulties; however, they also face heightened adversity in their home and extra-familial environments. Importantly, this comparison of single and couple mothers facing similar levels of adversity shows no difference in poor parenting practices, although single mothers remain more vulnerable to psychological distress. These findings have policy implications since they challenge the prevailing view that single-parent families inherently provide sub-optimal environments for raising children.
Resumo:
The on-demand printing of living cells using inkjet technologies has recently been demonstrated and allows for the controlled deposition of cells in microarrays. Here, we show that such arrays can be interrogated directly by robot-controlled liquid microextraction coupled with chip-based nanoelectospray mass spectrometry. Such automated analyses generate a profile of abundant membrane lipids that are characteristic of cell type. Significantly, the spatial control in both deposition and extraction steps combined with the sensitivity of the mass spectrometric detection allows for robust molecular profiling of individual cells. © 2012 American Chemical Society.
Resumo:
Increasing the importance and use of infrastructures such as bridges, demands more effective structural health monitoring (SHM) systems. SHM has well addressed the damage detection issues through several methods such as modal strain energy (MSE). Many of the available MSE methods either have been validated for limited type of structures such as beams or their performance is not satisfactory. Therefore, it requires a further improvement and validation of them for different types of structures. In this study, an MSE method was mathematically improved to precisely quantify the structural damage at an early stage of formation. Initially, the MSE equation was accurately formulated considering the damaged stiffness and then it was used for derivation of a more accurate sensitivity matrix. Verification of the improved method was done through two plane structures: a steel truss bridge and a concrete frame bridge models that demonstrate the framework of a short- and medium-span of bridge samples. Two damage scenarios including single- and multiple-damage were considered to occur in each structure. Then, for each structure, both intact and damaged, modal analysis was performed using STRAND7. Effects of up to 5 per cent noise were also comprised. The simulated mode shapes and natural frequencies derived were then imported to a MATLAB code. The results indicate that the improved method converges fast and performs well in agreement with numerical assumptions with few computational cycles. In presence of some noise level, it performs quite well too. The findings of this study can be numerically extended to 2D infrastructures particularly short- and medium-span bridges to detect the damage and quantify it more accurately. The method is capable of providing a proper SHM that facilitates timely maintenance of bridges to minimise the possible loss of lives and properties.
Resumo:
Reverse osmosis (RO) is used by coal seam gas (CSG) operators to treat produced water as it is a well-established and proven technology worldwide. Despite the suitability of RO, there are problems associated with RO technology such as membrane fouling which although not preventing use of RO does decrease effectiveness and increase operating costs. Hence, effective pre-treatment of water samples is essential. Electrocoagulation (EC) potentially can provide improved water purification compared to conventional coagulation prior to an RO unit. This paper provides the first reported study of EC for CSG water pre-treatment and compares the performance to a range of aluminium and iron based coagulants. It was found that EC was superior in terms of removal of silica, calcium, magnesium, barium and strontium in the produced water.
Analysis of strain-rate dependent mechanical behavior of single chondrocyte : a finite element study
Resumo:
Various studies have been conducted to investigate the effects of impact loading on cartilage damage and chondrocyte death. These have shown that the rate and magnitude of the applied strain significantly influence chondrocyte death, and that cell death occurred mostly in the superficial zone of cartilage suggesting the need to further understand the fundamental mechanisms underlying the chondrocytes death induced at certain levels of strain-rate. To date there is no comprehensive study providing insight on this phenomenon. The aim of this study is to examine the strain-rate dependent behavior of a single chondrocyte using a computational approach based on Finite Element Method (FEM). An FEM model was developed using various mechanical models, which were Standard Neo-Hookean Solid (SnHS), porohyperelastic (PHE) and poroviscohyperelastic (PVHE) to simulate Atomic Force Microscopy (AFM) experiments of chondrocyte. The PVHE showed, it can capture both relaxation and loading rate dependent behaviors of chondrocytes, accurately compared to other models.
Resumo:
The mechanical microenvironment at a fracture site could potentially influence the outcomes of bone fracture healing. It is known that, should the fixation construct be too stiff, or the gap between the fracture ends be too large, bones are less likely to heal. Flexible fixation or so-called “biological fixation” has been shown to encourage the formation of fracture callus, and therefore result in better healing outcomes. However, till date the nature of the relationship between the degree of mechanical stability provided by a flexible fixation and optimal healing fracture healing outcomes has not been fully understood. This paper presents a computational model that can predict healing out-comes from early stage healing data under various fixation configurations. The results of the simulations demonstrate that the change of mechanical microenvironment of fracture site resulting from the different fixation configurations is of importance for the healing outcomes.