929 resultados para Single Equation Models
Resumo:
We continue our discussion of the q-state Potts models for q less than or equal to 4, in the scaling regimes close to their critical and tricritical points. In a previous paper, the spectrum and full S-matrix of the models on an infinite line were elucidated; here, we consider finite-size behaviour. TBA equations are proposed for all cases related to phi(21) and phi(12) perturbations of unitary minimal models. These are subjected to a variety of checks in the ultraviolet and infrared limits, and compared with results from a recently-proposed non-linear integral equation. A non-linear integral equation is also used to study the flows from tricritical to critical models, over the full range of q. Our results should also be of relevance to the study of the off-critical dilute A models in regimes 1 and 2. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Models with interacting dark energy can alleviate the cosmic coincidence problem by allowing dark matter and dark energy to evolve in a similar fashion. At a fundamental level, these models are specified by choosing a functional form for the scalar potential and for the interaction term. However, in order to compare to observational data it is usually more convenient to use parametrizations of the dark energy equation of state and the evolution of the dark matter energy density. Once the relevant parameters are fitted, it is important to obtain the shape of the fundamental functions. In this paper I show how to reconstruct the scalar potential and the scalar interaction with dark matter from general parametrizations. I give a few examples and show that it is possible for the effective equation of state for the scalar field to cross the phantom barrier when interactions are allowed. I analyze the uncertainties in the reconstructed potential arising from foreseen errors in the estimation of fit parameters and point out that a Yukawa-like linear interaction results from a simple parametrization of the coupling.
Resumo:
We discuss in this paper equations describing processes involving non-linear and higher-order diffusion. We focus on a particular case (u(t) = 2 lambda (2)(uu(x))(x) + lambda (2)u(xxxx)), which is put into analogy with the KdV equation. A balance of nonlinearity and higher-order diffusion enables the existence of self-similar solutions, describing diffusive shocks. These shocks are continuous solutions with a discontinuous higher-order derivative at the shock front. We argue that they play a role analogous to the soliton solutions in the dispersive case. We also discuss several physical instances where such equations are relevant.
Resumo:
A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It is shown that the tight-binding approximation of the nonlinear Schrodinger equation with a periodic linear potential and periodic in space nonlinearity coefficient gives rise to a number of nonlinear lattices with complex, both linear and nonlinear, neighbor interactions. The obtained lattices present nonstandard possibilities, among which we mention a quasilinear regime, where the pulse dynamics obeys essentially the linear Schrodinger equation. We analyze the properties of such models both in connection to their modulational stability, as well as in regard to the existence and stability of their localized solitary wave solutions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An analytical approximate method for the Dirac equation with confining power law scalar plus vector potentials, applicable to the problem of the relativistic quark confinement, is presented. The method consists in an improved version of a saddle-point variational approach and it is applied to the fundamental state of massless single quarks for some especial cases of physical interest. Our treatment emphasizes aspects such as the quantum-mechanical relativistic Virial theorem, the saddle-point character of the critical point of the expectation value of the total energy, as well as the Klein paradox and the behaviour of the saddle-point variational energies and wave functions.
Resumo:
Relativistic confining potential models, endowed with bag constants associated to volume energy terms, are investigated. In contrast to the usual bag model, these potential bags are distinguished by having smeared bag surfaces. Based on the dynamical assumptions underlying the fuzzy bag model, these bag constants are derived from the corresponding energy-momentum tensor. Explicit expressions for the single-quark energies and for the nucleon bag constant are obtained by means of an improved analytical version of the saddle-point variational method for the Dirac equation with confining power-law potentials of the scalar plus vector (S + V) or pure scalar (S) type.
Resumo:
The enthalpy-entropy compensation theory was applied to water sorption for grapes of Italy variety. The moisture sorption isotherms were analyzed using the static gravimetric method at 35, 40, 50, 60, 70 and 75 degrees C. For isotherms construction, the skin and pulp of the grape were used separately and it was possible to observe significant differences. The GAB equation was fitted to the experimental data, using direct nonlinear regression analysis; the agreement between experimental and calculated values was satisfactory. The net isosteric heat or enthalpy of water sorption, determined from the equilibrium sorption data, showed a different behavior when compared with other works, as it was obtained for skin and pulp separately. Plots of Delta h vs Delta S for skin and pulp provided the isokinetic temperatures T-Bs = 423.2 +/- 27.6 K and T-Bp = 424.5 +/- 25.3 K, respectively, indicating an enthalpy-controlled desorption process over the whole range of moisture content considered.
Resumo:
The stability of the parameters of the Johnson-Mehl-Avrami equation was studied using two parametrizations of the sigmoidal function and its fit to some kinetic data. The results indicate that one of the forms of the function has more stable parameters and only for this form it is reasonable to use, as an approximation, the linear regression theory to analyse the parameters. © 1995 Chapman & Hall.