934 resultados para Shock-Fitting
Resumo:
Background/aims: Chronic infections such as those caused by Chlamydia pneumoniae and periodontopathic bacteria such as Porphyromonas gingivalis have been associated with atherosclerosis, possibly due to cross-reactivity of the immune response to bacterial GroEL with human heat shock protein (hHSP) 60. Methods: We examined the cross-reactivity of anti-GroEL and anti-P. gingivalis antibodies with hHSP60 in atherosclerosis patients and quantified a panel of six pathogens in atheromas. Results: After absorption of plasma samples with hHSP60, there were variable reductions in the levels of anti-GroEL and anti-P. gingivalis antibodies, suggesting that these antibodies cross-reacted with hHSP60. All of the artery specimens were positive for P. gingivalis. Fusobacterium nucleatum, Tannerella forsythia, C. pneumoniae, Helicobacter pylori, and Haemophilus influenzae were found in 84%, 48%, 28%, 4%, and 4% of arteries, respectively. The prevalence of the three periodontopathic microorganisms, P. gingivalis, F. nucleatum and T. forsythia, was significantly higher than that of the remaining three microorganisms. Conclusions: These results support the hypothesis that in some patients, cross-reactivity of the immune response to bacterial HSPs including those of periodontal pathogens, with arterial endothelial cells expressing hHSP60 may be a possible mechanism for the association between atherosclerosis and periodontal infection.
Resumo:
A role for infection and inflammation in atherogenesis is widely accepted. Arterial endothelium has been shown to express heat shock protein 60 (HSP60) and, since human (hHSP60) and bacterial (GroEL) HSP60s are highly conserved, the immune response to bacteria may result in cross-reactivity, leading to endothelial damage and thus contribute to the pathogenesis of atherosclerosis. In this study, GroEL-specific T-cell lines from peripheral blood and GroEL-, hHSP60-, and Porphyromonas gingivalis-specific T-cell lines from atherosclerotic plaques were established and characterized in terms of their cross-reactive proliferative responses, cytokine and chemokine profiles, and T-cell receptor (TCR) V beta expression by flow cytometry. The cross-reactivity of several lines was demonstrated. The cytokine profiles of the artery T-cell lines specific for GroEL, hHSP60, and P. gingivalis demonstrated Th2 phenotype predominance in the CD4 subset and Tc0 phenotype predominance in the CD8 subset. A higher proportion of CD4 cells were positive for interferon-inducible protein 10 and RANTES, with low percentages of cells positive for monocyte chemoattractant protein 1 and macrophage inflammatory protein la, whereas a high percentage of CD8 cells expressed all four chemokines. Finally, there was overexpression of the TCR V beta 5.2 family in all lines. These cytokine, chemokine, and V beta profiles are similar to those demonstrated previously for P. gingivalis-specific lines established from periodontal disease patients. These results support the hypothesis that in some patients cross-reactivity of the immune response to bacterial HSPs, including those of periodontal pathogens, with arterial endothelial cells expressing hHSP60 may explain the apparent association between atherosclerosis and periodontal infection.
Resumo:
Results of the benchmark test are presented of comparing numerical schemes solving shock wave of M-s = 2.38 in nitrogen and argon interacting with a 43 degrees semi-apex angle cone and corresponding experiments. The benchmark test was announced in Shock Waves Vol. 12, No. 4, in which we tried to clarify the effects of viscosity and heat conductivity on shock reflection in conical flows. This paper summarizes results of ten numerical and two experimental applications. State of the art in studies regarding the shock/cone interaction is clarified.
Resumo:
During the course of 2005, the price of crude oil reached unprecedented high levels, at least in nominal terms. Australian motorists have become used to paying more than a dollar a litre for petrol. Given the past volatility in oil prices, often described in terms of a series of oil ‘shocks’ (the large price increases in 1973, 1979 and 1999), several questions arise. First, will current high prices persist, or will prices decline substantially as occurred after previous oil shocks? Second, is the current shortage of oil a temporary phenomenon, caused by inadequate investment in oil exploration, drilling and refining capacity, or is it a signal that the supply of oil available to the world has peaked? Third, will high oil prices lead to broader economic disruption, as is commonly supposed to have happened after previous shocks? Fourth, how painful will an adjustment to lower use of oil be? Finally, how does all this relate to our efforts to deal with the problem of climate change? This article is an effort to answer some of these questions in the light of the knowledge available to us.
Resumo:
Hydrothermally altered shock-metamorphosed gneisses consisting of relic igneous biotite-K-feldspor-Na-rich alkali feldspar - plagioclase - quartz assemblages ( accessory garnet, corundum, titanite, monazite, zircon), and showing extensive replacement by montmorillonite, illite, sericite, and to a lesser extent chlorite, calcite, epidote, zoisite and pyrite, occur in the basement core uplift of the Woodleigh impact structure, Western Australia. The rocks display extensive hydrothermal clay alteration, complicating identification of pre-hydrothermal and pre-impact textures and compositions. Analysis of quartz-hosted planar deformation features (PDFs) indicates a majority of indexed sets parallel to omega{10 (1) over bar3}, a lesser abundance of sets parallel to pi{10 (1) over bar2}, and some sets parallel to the basal plane (0001) and r,z {10 (1) over bar1}, consistent with pressures about or over 20 GPa. Feldspar-hosted FDFs form reticulate vein networks displaying checkerboard-like to irregular and serrated patterns attributable to preferential replacement of shock-damaged PDFs and/or perthitic twin lamella by clay minerals. The gneisses are pervaded by clay-dominated intergranular and intragranular veins of cryptocrystalline material that display marked departures from bulk-rock chemistry and from mineral compositions. XRD analysis identifies the cryptocrystalline components as illite - montmorillonite, illite and chlorite, while laser Raman analysis identifies high-fluorescence sub-micrometre clay assemblage, feldspar, quartz and minor mica. SEM/EDS-probe and laser-ICPMS analysis indicate low-K high-Mg clay mineral compositions consistent with montmorillonite. Quartz PDF-hosted cryptocrystalline laminae display distinct enrichments in Al, Mg, Ca and K. Altered intergranular veins and feldspar-hosted cryptocrystalline components show consistent enrichment in the relatively refractory elements (Al, Cc, Mg, Fe) and depletion in relatively volatile elements (Si, K, Na). The clay alteration retards determination whether clay-dominated vein networks represent altered shock-induced pseudotachylite veins, diaplectic zones and/or shock-damaged twin lamella, and/or result from purely mineralogical and chemical differentiation affected by hydrothermal fluids, Overall enrichment of the shocked gneiss and of the cryptocrystalline components in Mg and trace ferromagnesian elements (Ni, Cc, Cr) may be attributed alternatively to introduction of siderophile element-rich fluid from the projectile, or/and contamination of hydrothermal fluids by MgO from dolomites surrounding the basement uplift. High Ni/Co and Ni/Cr and anomalous DGE (platinum group elements) may support the former model.
Resumo:
The XPS peaks of Fe 3p for Fe2+ and Fe3+ in FeO and Fe2O3, respectively, have been measured and the effects of curve fitting parameters on interpretation of the data have been analysed. Firstly, the peak fit parameters, i.e. (1) the number of peaks to be deconvoluted, (2) the range of the peak for back ground subtraction, (3) straight line (Li) or the Shirley (Sh) background subtraction method, (4) GL ratio (the ratio of Gaussian and Lorentzian contribution to the peak shape) and (5) asymmetry factor (AS), are manually selected. Secondly, the standard peak fit parameters were systematically investigated. The peak shape was fitted to a Voigt function by changing the peak position, the peak height and the full width at half maximum (FWHM) to minimize the chi(2). The recommended peak positions and peak parameters for Fe2+ and Fe3+ in iron oxides have been determined. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Lift, pitching moment, and thrust/drag on a supersonic combustion ramjet were measured in the T4 free-piston shock tunnel using a three-component stress-wave force balance. The scramjet model was 0.567 m long and weighed approximately 6 kg. Combustion occurred at a nozzle-supply enthalpy of 3.3 MJ/kg and nozzle-supply pressure of 32 MPa at Mach 6.6 for equivalence ratios up to 1.4. The force coefficients varied approximately linearly with equivalence ratio. The location of the center of pressure changed by 10% of the chord of the model over the range of equivalence ratios tested. Lift and pitching-moment coefficients remained constant when the nozzle-supply enthalpy was increased to 4.9 MJ/kg at an equivalence ratio of 0.8, but the thrust coefficient decreased rapidly. When the nozzle-supply pressure was reduced at a nozzle-supply enthalpy of 3.3 MJ/kg and an equivalence ratio of 0.8, the combustion-generated increment of lift and thrust was maintained at 26 MPa, but disappeared at 16 MPa. Measured lift and thrust forces agreed well with calculations made using a simplified force prediction model, but the measured pitching moment substantially exceeded predictions. Choking occurred at nozzle-supply enthalpies of less than 3.0 MJ/kg with an equivalence ratio of 0.8. The tests failed to yield a positive thrust because of the skin-friction drag that accounted for up to 50% of the fuel-off drag.
Resumo:
Disease is the result of interactions amongst pathogens, the environment and host organisms. To investigate the effect of stress on Penaeus monodon, juvenile shrimp were given short term exposure to hypoxic, hyperthermic and osmotic stress twice over a 1-week period and estimates of total haemocyte count (THC), heat shock protein (HSP) 70 expression and load of gill associated virus (GAV) were determined at different time points. While no significant differences were observed in survival and THC between stressed and control shrimp (P>0.05), HSP 70 expression and GAV load changed significantly (P
Resumo:
Simulations of a complete reflected shock tunnel facility have been performed with the aim of providing a better understanding of the flow through these facilities. In particular, the analysis is focused on the premature contamination of the test flow with the driver gas. The axisymmetric simulations model the full geometry of the shock tunnel and incorporate an iris-based model of the primary diaphragm rupture mechanics, an ideal secondary diaphragm and account for turbulence in the shock tube boundary layer with the Baldwin-Lomax eddy viscosity model. Two operating conditions were examined: one resulting in an over-tailored mode of operation and the other resulting in approximately tailored operation. The accuracy of the simulations is assessed through comparison with experimental measurements of static pressure, pitot pressure and stagnation temperature. It is shown that the widely-accepted driver gas contamination mechanism in which driver gas 'jets' along the walls through action of the bifurcated foot of the reflected shock, does not directly transport the driver gas to the nozzle at these conditions. Instead, driver gas laden vortices are generated by the bifurcated reflected shock. These vortices prevent jetting of the driver gas along the walls and convect driver gas away from the shock tube wall and downstream into the nozzle. Additional vorticity generated by the interaction of the reflected shock and the contact surface enhances the process in the over-tailored case. However, the basic mechanism appears to operate in a similar way for both the over-tailored and the approximately tailored conditions.
Resumo:
We investigate the gas-particle dynamics of a device designed for biological pre-clinical experiments. The device uses transonic/supersonic gas flow to accelerate microparticles such that they penetrate the outer skin layers. By using a shock tube coupled to a correctly expanded nozzle, a quasi-one-dimensional, quasi-steady flow (QSF) is produced to uniformly accelerate the microparticles. The system utilises a microparticle cassette (a diaphragm sealed container) that incorporates a jet mixing mechanism to stir the particles prior to diaphragm rupture. Pressure measurements reveal that a QSF exit period - suitable for uniformly accelerating microparticles - exists between 155 and 220 mus after diaphragm rupture. Immediately preceding the QSF period, a starting process secondary shock was shown to form with its (x,t) trajectory comparing well to theoretical estimates. To characterise the microparticle, flow particle image velocimetry experiments were conducted at the nozzle exit, using particle payloads with varying diameter (2.7-48 mu m), density (600-16,800 kg/m(3)) and mass (0.25-10 mg). The resultant microparticle velocities were temporally uniform. The experiments also show that the starting process does not significantly influence the microparticle nozzle exit velocities. The velocity distribution across the nozzle exit was also uniform for the majority of microparticle types tested. For payload masses typically used in pre-clinical drug and vaccine applications (
Resumo:
A unique hand-held gene gun is employed for ballistically delivering biomolecules to key cells in the skin and mucosa in the treatment of the major diseases. One of these types of devices, called the Contoured Shock Tube (CST), delivers powdered micro-particles to the skin with a narrow and highly controllable velocity distribution and a nominally uniform spatial distribution. In this paper, we apply a numerical approach to gain new insights in to the behavior of the CST prototype device. The drag correlations proposed by Henderson (1976), Igra and Takayama (1993) and Kurian and Das (1997) were applied to predict the micro-particle transport in a numerically simulated gas flow. Simulated pressure histories agree well with the corresponding static and Pitot pressure measurements, validating the CFD approach. The calculated velocity distributions show a good agreement, with the best prediction from Igra & Takayama correlation (maximum discrepancy of 5%). Key features of the gas dynamics and gas-particle interaction are discussed. Statistic analyses show a tight free-jet particle velocity distribution is achieved (570 +/- 14.7 m/s) for polystyrene particles (39 +/- 1 mu m), representative of a drug payload.
Resumo:
In this paper, we examine the problem of fitting a hypersphere to a set of noisy measurements of points on its surface. Our work generalises an estimator of Delogne (Proc. IMEKO-Symp. Microwave Measurements 1972,117-123) which he proposed for circles and which has been shown by Kasa (IEEE Trans. Instrum. Meas. 25, 1976, 8-14) to be convenient for its ease of analysis and computation. We also generalise Chan's 'circular functional relationship' to describe the distribution of points. We derive the Cramer-Rao lower bound (CRLB) under this model and we derive approximations for the mean and variance for fixed sample sizes when the noise variance is small. We perform a statistical analysis of the estimate of the hypersphere's centre. We examine the existence of the mean and variance of the estimator for fixed sample sizes. We find that the mean exists when the number of sample points is greater than M + 1, where M is the dimension of the hypersphere. The variance exists when the number of sample points is greater than M + 2. We find that the bias approaches zero as the noise variance diminishes and that the variance approaches the CRLB. We provide simulation results to support our findings.
Resumo:
We demonstrate an end-to-end computational model of the HEG shock tunnel as a way to extract more precise test flow conditions and as a way of getting predictions of new operating conditions. For a selection of established operating conditions, the L1d program was used to simulate the one-dimensional gas-dynamic processes within the whole of the facility. The program reproduces the compression tube performance reliably and, with the inclusion of a loss factor near the upstream-end of the compression tube, it provides a good estimate of the equilibrium pressure in the shock-reflection region over the set of six standard operating conditions for HEG.