842 resultados para Sherrington, Jack
Resumo:
Semantic Web technologies offer a promising framework for integration of disparate biomedical data. In this paper we present the semantic information integration platform under development at the Center for Clinical and Translational Sciences (CCTS) at the University of Texas Health Science Center at Houston (UTHSC-H) as part of our Clinical and Translational Science Award (CTSA) program. We utilize the Semantic Web technologies not only for integrating, repurposing and classification of multi-source clinical data, but also to construct a distributed environment for information sharing, and collaboration online. Service Oriented Architecture (SOA) is used to modularize and distribute reusable services in a dynamic and distributed environment. Components of the semantic solution and its overall architecture are described.
Resumo:
Thrombospondin-5 (TSP5) is a large extracellular matrix glycoprotein found in musculoskeletal tissues. TSP5 mutations cause two skeletal dysplasias, pseudoachondroplasia and multiple epiphyseal dysplasia; both show a characteristic growth plate phenotype with retention of TSP5, type IX collagen (Col9), and matrillin-3 in the rough endoplasmic reticulum. Whereas most studies focus on defining the disease process, few functional studies have been performed. TSP5 knockout mice have no obvious skeletal abnormalities, suggesting that TSP5 is not essential in the growth plate and/or that other TSPs may compensate. In contrast, Col9 knockout mice have diminished matrillin-3 levels in the extracellular matrix and early-onset osteoarthritis. To define the roles of TSP1, TSP3, TSP5, and Col9 in the growth plate, all knockout and combinatorial strains were analyzed using histomorphometric techniques. While significant alterations in growth plate organization were found in certain single knockout mouse strains, skeletal growth was only mildly disturbed. In contrast, dramatic changes in growth plate organization in TSP3/5/Col9 knockout mice resulted in a 20% reduction in limb length, corresponding to similar short stature in humans. These studies show that type IX collagen may regulate growth plate width; TSP3, TSP5, and Col9 appear to contribute to growth plate organization; and TSP1 may help define the timing of growth plate closure when other extracellular proteins are absent.
Resumo:
BACKGROUND: Neural tube defects (NTDs) occur in as many as 0.5-2 per 1000 live births in the United States. One of the most common and severe neural tube defects is meningomyelocele (MM) resulting from failed closure of the caudal end of the neural tube. MM has been induced by retinoic acid teratogenicity in rodent models. We hypothesized that genetic variants influencing retinoic acid (RA) induction via retinoic acid receptors (RARs) may be associated with risk for MM. METHODS: We analyzed 47 single nucleotide polymorphisms (SNPs) that span across the three retinoic acid receptor genes using the SNPlex genotyping platform. Our cohort consisted of 610 MM families. RESULTS: One variant in the RARA gene (rs12051734), three variants in the RARB gene (rs6799734, rs12630816, rs17016462), and a single variant in the RARG gene (rs3741434) were found to be statistically significant at p < 0.05. CONCLUSION: RAR genes were associated with risk for MM. For all associated SNPs, the rare allele conferred a protective effect for MM susceptibility.
Resumo:
BACKGROUND: Meningomyelocele (MM) results from lack of closure of the neural tube during embryologic development. Periconceptional folic acid supplementation is a modifier of MM risk in humans, leading toan interest in the folate transport genes as potential candidates for association to MM. METHODS: This study used the SNPlex Genotyping (ABI, Foster City, CA) platform to genotype 20 single polymorphic variants across the folate receptor genes (FOLR1, FOLR2, FOLR3) and the folate carrier gene (SLC19A1) to assess their association to MM. The study population included 329 trio and 281 duo families. Only cases with MM were included. Genetic association was assessed using the transmission disequilibrium test in PLINK. RESULTS: A variant in the FOLR2 gene (rs13908), three linked variants in the FOLR3 gene (rs7925545, rs7926875, rs7926987), and two variants in the SLC19A1 gene (rs1888530 and rs3788200) were statistically significant for association to MM in our population. CONCLUSION: This study involved the analyses of selected single nucleotide polymorphisms across the folate receptor genes and the folate carrier gene in a large population sample. It provided evidence that the rare alleles of specific single nucleotide polymorphisms within these genes appear to be statistically significant for association to MM in the patient population that was tested.
Resumo:
Children with spina bifida meningomyelocele (SBM) are impaired relative to controls in terms of discriminating strong-meter and weak-meter rhythms, so congenital cerebellar dysmorphologies that affect rhythmic movements also disrupt rhythm perception. Cerebellar parcellations in children with SBM showed an abnormal configuration of volume fractions in cerebellar regions important for rhythm function: a smaller inferior-posterior lobe, and larger anterior and superior-posterior lobes.
Resumo:
Using diffusion tensor tractography, we quantified the microstructural changes in the association, projection, and commissural compact white matter pathways of the human brain over the lifespan in a cohort of healthy right-handed children and adults aged 6-68 years. In both males and females, the diffusion tensor radial diffusivity of the bilateral arcuate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, corticospinal, somatosensory tracts, and the corpus callosum followed a U-curve with advancing age; fractional anisotropy in the same pathways followed an inverted U-curve. Our study provides useful baseline data for the interpretation of data collected from patients.
Resumo:
BACKGROUND: Meningomyelocele (MM) is a common human birth defect. MM is a disorder of neural development caused by contributions from genes and environmental factors that result in the NTD and lead to a spectrum of physical and neurocognitive phenotypes. METHODS: A multidisciplinary approach has been taken to develop a comprehensive understanding of MM through collaborative efforts from investigators specializing in genetics, development, brain imaging, and neurocognitive outcome. Patients have been recruited from five different sites: Houston and the Texas-Mexico border area; Toronto, Canada; Los Angeles, California; and Lexington, Kentucky. Genetic risk factors for MM have been assessed by genotyping and association testing using the transmission disequilibrium test. RESULTS: A total of 509 affected child/parent trios and 309 affected child/parent duos have been enrolled to date for genetic association studies. Subsets of the patients have also been enrolled for studies assessing development, brain imaging, and neurocognitive outcomes. The study recruited two major ethnic groups, with 45.9% Hispanics of Mexican descent and 36.2% North American Caucasians of European descent. The remaining patients are African-American, South and Central American, Native American, and Asian. Studies of this group of patients have already discovered distinct corpus callosum morphology and neurocognitive deficits that associate with MM. We have identified maternal MTHFR 667T allele as a risk factor for MM. In addition, we also found that several genes for glucose transport and metabolism are potential risk factors for MM. CONCLUSIONS: The enrolled patient population provides a valuable resource for elucidating the disease characteristics and mechanisms for MM development.
Resumo:
The authors test single nucleotide polymorphisms (SNPs) in coding sequences of 12 candidate genes involved in glucose metabolism and obesity for associations with spina bifida. Genotyping was performed on 507 children with spina bifida and their parents plus anonymous control DNAs from Hispanic and Caucasian individuals. The transmission disequilibrium test was performed to test for genetic associations between transmission of alleles and spina bifida in the offspring (P < .05). A statistically significant association between Lys481 of HK1 (G allele), Arg109Lys of LEPR (G allele), and Pro196 of GLUT1 (A allele) was found ( P = .019, .039, and .040, respectively). Three SNPs on 3 genes involved with glucose metabolism and obesity may be associated with increased susceptibility to spina bifida.
Resumo:
Angiomyolipomas are benign tumors of the kidney which express phenotypes of smooth muscle, fat, and melanocytes. These tumors appear with increased frequency in the autosomal dominant disorder tuberous sclerosis and are the leading cause of morbidity in adults with tuberous sclerosis. While benign, these tumors are capable of provoking life threatening hemorrhage and replacement of the kidney parenchyma, resulting in renal failure. The histogenesis of these tumors is currently unclear, although currently, we believe these tumors arise from "perivascular epithelioid cells" of which no normal counterpart has been convincingly demonstrated. Recently, stem cell precursors have been recognized that can give rise to smooth muscle and melanocytes. These precursors have been shown to express the neural stem cell marker NG2 and L1. In order to determine whether angiomyolipomas, which exhibit smooth muscle and melanocytic phenotypes, express NG2 and L1, we performed immunocytochemistry on a cell line derived from a human angiomyolipoma, and found that these cells are uniformly positive. Immunohistochemistry of human angiomyolipoma specimens revealed uniform staining of tumor cells, while renal cell carcinomas revealed positivity only of angiogenic vessels. These results support a novel histogenesis of angiomyolipoma as a defect in differentiation of stem cell precursors.
Resumo:
Abstract: The 5-HT3 receptor is one of several ion channels responsible for the transmission of nerve impulses in the peripheral and central nervous systems. Until now, it has been difficult to characterize transmembrane receptors with classical structural biology approaches like X-ray crystallography. The use of photoaffinity probes is an alternative approach to identify regions in the protein where small molecules bind. To this end, we present two photoaffinity probes based on granisetron, a well known antagonist of the 5-HT3 receptor. These new probes show nanomolar binding affinity for the orthosteric binding site. In addition, we investigated their reactivity using irradiation experiments.