893 resultados para Sex and kinship brain network differences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attention difficulties and poor balance are both common sequel following a brain injury. This study aimed to determine whether brain injured adults had greater difficulty than controls in performing a basic balance task while concurrently completing several different cognitive tasks varying in visuo-spatial attentional load and complexity. Twenty brain injured adults and 20 age-, sex- and education level-matched controls performed a balance-only task (step stance held for 30s), five cognitive-only tasks (simple and complex non-spatial, visuo-spatial, and a control articulation task), and both together (dual tasks). Brain injured adults showed a greater centre of pressure (COP) excursion and velocity in all conditions than controls. Brain injured adults also demonstrated greater interference with balance when concurrently performing two cognitive tasks than control subjects. These were the control articulation and the simple non-spatial task. It is likely that distractibility during these simple tasks contributed to an increase in COP motion and interference with postural stability in stance. Performing visuo-spatial tasks concurrently with the balance task did not result in any change in COP motion. Dual task interference in this group is thus unlikely to be due to structural interference. Similarly, as the more complex tasks did not uniformly result in increased interference, a reduction in attentional capacity in the brain injured population is unlikely to be the primary cause of dual task interference in this group. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As human papillomavirus-like particles (HPV-VLP) represent a promising vaccine delivery vehicle, delineation of the interaction of VLP with professional APC should improve vaccine development. Differences in the capacity of VLP to signal dendritic cells (DC) and Langerhans cells (LC) have been demonstrated, and evidence has been presented for both clathrin-coated pits and proteoglycans (PG) in the uptake pathway of VLP into epithelial cells. Therefore, we compared HPV-VLP uptake mechanisms in human monocyte-derived DC and LC, and their ability to cross-present HPV VLP-associated antigen in the MHC class I pathway. DC and LC each took up virus-like particles (VLP). DC uptake of and signalling by VLP was inhibited by amiloride or cytochalasin D (CCD), but not by filipin treatment, and was blocked by several sulfated and non-sulfated polysaccharides and anti-CD16. In contrast, LC uptake was inhibited only by filipin, and VLP in LC were associated with caveolin, langerin, and CD1a. These data suggest fundamentally different routes of VLP uptake by DC and LC. Despite these differences, VLP taken up by DC and LC were each able to prime naive CD8(+) T cells and induce cytolytic effector T cells in vitro. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study examined the effects of neurosurgical management of Parkinson's disease (PD), including the procedures of pallidotomy, thalamotomy, and deep-brain stimulation (DBS) on perceptual speech characteristics, speech,, intelligibility and oromotor function in a group of 22 participants with PD. The surgical participant group was compared with a group of 25 non-neurologically impaired individuals matched for age and sex. In addition, the study investigated 16 participants with PD who did not undergo neurosurgical management to control for disease progression. Results revealed that neurosurgical intervention did not significantly change the surgical participants' perceptual speech dimensions or oromotor function despite significant postoperative improvements in ratings of general motor function and disease severity. Reasons why neurosurgical intervention resulted in dissimilar outcomes with respect to participants' perceptual speech dimensions and general motor function are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we review evidence from comparative studies of primate cortical organization, highlighting recent findings and hypotheses that may help us to understand the rules governing evolutionary changes of the cortical map and the process of formation of areas during development. We argue that clear unequivocal views of cortical areas and their homologies are more likely to emerge for 'core' fields, including the primary sensory areas, which are specified early in development by precise molecular identification steps. In primates, the middle temporal area is probably one of these primordial cortical fields. Areas that form at progressively later stages of development correspond to progressively more recent evolutionary events, their development being less firmly anchored in molecular specification. The certainty with which areal boundaries can be delimited, and likely homologies can be assigned, becomes increasingly blurred in parallel with this evolutionary/developmental sequence. For example, while current concepts for the definition of cortical areas have been vindicated in allowing a clarification of the organization of the New World monkey 'third tier' visual cortex (the third and dorsomedial areas, V3 and DM), our analyses suggest that more flexible mapping criteria may be needed to unravel the organization of higher-order visual association and polysensory areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Australia more than 300 vertebrates, including 43 insectivorous bat species, depend on hollows in habitat trees for shelter, with many species using a network of multiple trees as roosts, We used roost-switching data on white-striped freetail bats (Tadarida australis; Microchiroptera: Molossidae) to construct a network representation of day roosts in suburban Brisbane, Australia. Bats were caught from a communal roost tree with a roosting group of several hundred individuals and released with transmitters. Each roost used by the bats represented a node in the network, and the movements of bats between roosts formed the links between nodes. Despite differences in gender and reproductive stages, the bats exhibited the same behavior throughout three radiotelemetry periods and over 500 bat days of radio tracking: each roosted in separate roosts, switched roosts very infrequently, and associated with other bats only at the communal roost This network resembled a scale-free network in which the distribution of the number of links from each roost followed a power law. Despite being spread over a large geographic area (> 200 km(2)), each roost was connected to others by less than three links. One roost (the hub or communal roost) defined the architecture of the network because it had the most links. That the network showed scale-free properties has profound implications for the management of the habitat trees of this roosting group. Scale-free networks provide high tolerance against stochastic events such as random roost removals but are susceptible to the selective removal of hub nodes. Network analysis is a useful tool for understanding the structural organization of habitat tree usage and allows the informed judgment of the relative importance of individual trees and hence the derivation of appropriate management decisions, Conservation planners and managers should emphasize the differential importance of habitat trees and think of them as being analogous to vital service centers in human societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complex set of axonal guidance mechanisms are utilized by axons to locate and innervate their targets. In the developing mouse forebrain, we previously described several midline glial populations as well as various guidance molecules that regulate the formation of the corpus callosum. Since agenesis of the corpus callosum is associated with over 50 different human congenital syndromes, we wanted to investigate whether these same mechanisms also operate during human callosal development. Here we analyze midline glial and commissural development in human fetal brains ranging from 13 to 20 weeks of gestation using both diffusion tensor magnetic resonance imaging and immunohistochemistry. Through our combined radiological and histological studies, we demonstrate the morphological development of multiple forebrain commissures/decussations, including the corpus callosum, anterior commissure, hippocampal commissure, and the optic chiasm. Histological analyses demonstrated that all the midline glial populations previously described in mouse, as well as structures analogous to the subcallosal sling and cingulate pioneering axons, that mediate callosal axon guidance in mouse, are also present during human brain development. Finally, by Northern blot analysis, we have identified that molecules involved in mouse callosal development, including Slit, Robo, Netrin1, DCC, Nfia, Emx1, and GAP-43, are all expressed in human fetal brain. These data suggest that similar mechanisms and molecules required for midline commissure formation operate during both mouse and human brain development. Thus, the mouse is an excellent model system for studying normal and pathological commissural formation in human brain development. (c) 2006 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal experiments have shown that Vitamin D plays a role in both brain development and adult brain function. The adult Vitamin D receptor null mutant mouse (VDR -/-) is reported to be less active and more anxious than wild-type litter mate controls and to have poor swimming ability. However, an anxious behavioural phenotype is inferred from differences in locomotor behaviour. This is a general problem in behavioural phenotyping where a neurological phenotype is inferred from changes in locomotion which will be affected by non-neurological factors, such as muscle fatigue. In this study of VDR -/-, we conducted a detailed examination of one form of motor behaviour, swimming, compared to wildtype littermate controls. Swimming was assessed using a forced swim test, a laneway swimming test and a watermaze test using a visible platform. Post-swimming activity was assessed by comparing grooming and rearing behaviour before, and 5 min after, the forced swimming test. We replicated previous findings in which VDR -/- mice demonstrate more sinking episodes than wildtype controls in the forced swim test but they were similar to controls in the time taken to swim a 1 m laneway, and in the time taken to reach a visible platform in the watermaze. Thus, the VDR -/- mice were able to swim but were not able to float. Grooming and rearing behaviour of the VDR -/- mice was similar to wildtype controls before the forced swim but the VDR -/- were much less active after the swim compared with wildtype mice which displayed high levels of grooming and rearing. We conclude that VDR -/- mice have muscular and motor impairments that do not affect their ability to swim but significantly alters the ability to float as well as their post-swimming activity. Differences in muscle strength may confound tests of activity that are used to infer an anxious phenotype. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic alcohol misuse by human subjects leads to neuronal loss in regions such as the superior frontal cortex (SFC). Propensity to alcoholism is associated with several genes. γ-Aminobutyric acid (GABA)A receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the regional presentation of GABAA and glutamate-NMDA (N-methyl-d-aspartate) receptors in SFC. Autopsy tissue was obtained from alcoholics without comorbid disease, alcoholics with liver cirrhosis, and matched controls. ADH1C, DRD2B, EAAT2, and APOE genotypes modulated GABAA-β subunit protein expression in SFC toward a less-effective form of the receptor. Most genotypes did not divide alcoholics and controls on glutamate-NMDA receptor pharmacology, although gender and cirrhosis did. Genotype may affect amino acid transmission locally to influence neuronal vulnerability.