949 resultados para Seneca, Lucius Annaeus, approximately 4 B.C.-65 A.D.
Resumo:
The circulatory system comprises the blood vascular system and the lymphatic vascular system. These two systems function in parallel. Blood vessels form a closed system that delivers oxygen and nutrients to the tissues and removes waste products from the tissues, while lymphatic vessels are blind-ended tubes that collect extravasated fluid and cells from the tissues and return them back to blood circulation. Development of blood and lymphatic vascular systems occurs in series. Blood vessels are formed via vasculogenesis and angiogenesis whereas lymphatic vessels develop via lymphangiogenesis, after the blood vascular system is already functional. Members of the vascular endothelial growth factor (VEGF) family are regulators of both angiogenesis and lymphangiogenesis, while members of the platelet-derived growth factor (PDGF) family are major mitogens for pericytes and smooth muscle cells and regulate formation of blood vessels. Vascular endothelial growth factor C (VEGF-C) is the major lymphatic growth factor and signaling through its receptor vascular endothelial growth factor receptor 3 (VEGFR-3) is sufficient for lymphangiogenesis in adults. We studied the role of VEGF-C in embryonic lymphangiogenesis and showed that VEGF-C is absolutely required for the formation of lymph sacs from embryonic veins. VEGFR-3 is also required for normal development of the blood vascular system during embryogenesis, as Vegfr3 knockout mice die at mid-gestation due to failure in remodeling of the blood vessels. We showed that sufficient VEGFR-3 signaling in the embryo proper is required for embryonic angiogenesis and in a dosage-sensitive manner for embryonic lymphangiogenesis. Importantly, mice deficient in both VEGFR-3 ligands, Vegfc and Vegfd, developed a normal blood vasculature, suggesting VEGF-C- and VEGF-D- independent functions for VEGFR-3 in the early embryo. Platelet-derived growth factor B (PDGF-B) signals via PDGFR-b and regulates formation of blood vessels by recruiting pericytes and smooth muscle cells around nascent endothelial tubes. We showed that PDGF-B fails to induce lymphangiogenesis when overexpressed in adult mouse skin using adenoviral vectors. However, mouse embryos lacking Pdgfb showed abnormal lymphatic vessels, suggesting that PDGF-B plays a role in lymphatic vessel maturation and separation from blood vessels during embryogenesis. Lymphatic vessels play a key role in immune surveillance, fat absorption and maintenance of fluid homeostasis in the body. However, lymphatic vessels are also involved in various diseases, such as lymphedema and tumor metastasis. These studies elucidate the basic mechanisms of embryonic lymphangiogenesis and add to the knowledge of lymphedema and tumor metastasis treatments by giving novel insights into how lymphatic vessel growth could be induced (in lymphedema) or inhibited (in tumor metastasis).
Resumo:
Sperm chromatin status was assessed in 565 Zebu and Zebu crossbred beef bulls in extensive tropical environments using the sperm chromatin structure assay (SCSA). The SCSA involved exposure of sperm to acid hydrolysis for 0.5 or 5.0 minutes, followed by flow cytometry to ascertain relative amounts of double-stranded (normal) and single-stranded (denatured) DNA, which was used to generate a DNA fragmentation index (%DFI). With conventional SCSA (0.5-minute SCSA), 513 bulls (91%) had <15 %DFI, 24 bulls (4%) had 15 to 27 %DFI, and 28 bulls (5%) had >27 %DFI. In 5.0-minute SCSA, 432 bulls (76%) had <15 %DFI, 68 bulls (12%) had 15 to 27 %DFI and 65 bulls (12%) had >27 %DFI. For most bulls, the SCSA was repeatable on two to four occasions; however, because most bulls had <15 %DFI, repeatability of the SCSA will need to be determined in a larger number of bulls in the 15 to 27 %DFI and >27 %DFI categories. The %DFI was negatively correlated with several bull semen parameters and the strongest negative correlation was with normal sperm. There was a strong positive correlation between %DFI and sperm head abnormalities. Based on these findings, most Zebu beef bulls in extensive tropical environments had relatively stable sperm chromatin. Based on the apparent negative correlations with conventional semen parameters, we inferred that the SCSA measured a unique feature of sperm quality, which has also been suggested for other species. Further studies on the relationships between sperm chromatin stability and fertility are required in beef bulls before chromatin status can be used as an additional predictor of the siring capacity of individual bulls in extensive multiple-sire herds. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Targets for improvements in water quality entering the Great Barrier Reef (GBR) have been set through the Reef Water Quality Protection Plan (Reef Plan). To measure and report on progress towards the targets set a program has been established that combines monitoring and modelling at paddock through to catchment and reef scales; the Paddock to Reef Integrated Monitoring, Modelling and Reporting Program (Paddock to Reef Program). This program aims to provide evidence of links between land management activities, water quality and reef health. Five lines of evidence are used: the effectiveness of management practices to improve water quality; the prevalence of management practice adoption and change in catchment indicators; long-term monitoring of catchment water quality; paddock & catchment modelling to provide a relative assessment of progress towards meeting targets; and finally marine monitoring of GBR water quality and reef ecosystem health. This paper outlines the first four lines of evidence. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The X-ray crystal structures of 4-butyl-1,2-diphenylpyrazolidine-3,5-dione (phenylbutazone)(I). and its 2 : 1 complex (II) with piperazine have been determined by direct methods and the structures refined to R 0.096 (2 300 observed reflections measured by diffractometer) and 0.074 (2 494 observed reflections visuallyestimated). Crystals are monoclinic, space group P21/c; for (I)a= 21.695(4), b= 5.823(2), c= 27.881(4)Å, = 108.06 (10)°, Z= 8, and for (II)a= 8.048(4), b= 15.081(4), c= 15.583(7)Å, = 95.9(3)°, Z= 2. The two crystallographically independant molecules in the structure of (I) are similar except for the conformation of the butyl group, which is disordered in one of the molecules. In the pyrazolidinedione group, the two C–C bonds are single and the two C–O bonds double. The two nitrogen atoms in the five-membered ring are pyramidal with the attached phenyl groups lying on the opposite sides of the mean plane of the ring. The phenylbutazone molecule in (II) exists as a negative ion owing to deprotonation of C-4. C-4 is therefore trigonal and the orientation of the Bu group with respect to the pyrazolidinedione group is considerably different from that in (I); there is also considerable electron delocalization along the C–O and C–C bonds. These changes in geometry and electronic structure may relate to biological activity. The doubly charged cationic piperazine molecule exists in the chair form with the nitrogen atoms at the apices. The crystal structure of (II) is stabilized by ionic interactions and N–H O hydrogen bonds.
Resumo:
Disodium deoxyuridine 5'-nhosDhate pentahvdrate, Na2(C9H l INEOsP). 5 H20, Call 11N208 P2-. 2Na +. 5 H20, crystallizes in the monoclinic space group P2: with a = 7.250 (4), b = 35.45 (2), c = 7.132 (4)/~, fl = 102.2 (4) °, Z = 4. The Cu Ka intensity data were collected photographically and estimated visually. The structure was obtained by the minimum-function method and difference syntheses and refined to an R of 0.089. In both molecules the uracil base has an anti conformation (2cN = 57.1 and 59.9 °) with respect to the sugar. The deoxyribose moiety of molecule B shows a typical C(l')-exo puckering, with C(I') displaced by 0.52 /k from the best plane. The furanose ring conformation of molecule A can be described as C(2')-endo,C(l')-exo. Both the molecules have an unusual trans-gauche conformation about the exocyclic C(4')-C(5') bond with (~0oo = 171.1, 172.2°; ~0oc = -64.7, -65.9°).
Resumo:
Aurivillus intergrowth Bi4Ti3O12-5BiFeO(3) was demonstrated to be ferroelectric that evoked the possibility of achieving high temperature magnetoelectric property in this family of compounds. X-ray diffraction studies confirmed its structure to be orthorhombic [Fmm2; a=5.5061(11) A degrees, b=5.4857(7) A degrees, c=65.742(12) A degrees]. However, transmission electron microscopy established the random incidence of intergrowth at nanoscale corresponding to n=6 and n=7 members of the Aurivillius family. Diffuse ferroelectric orthorhombic to paraelectric tetragonal phase transition around 857 K was confirmed by dielectric and high temperature x-ray diffraction studies. Polarization versus electric field hysteresis loops associated with 2P(r) of 5.2 mu C/cm(2) and coercive field of 42 kV/cm were obtained at 300 K.
Resumo:
We report the observation of the bottom, doubly-strange baryon Omega^-_b through the decay chain Omega^-_b -> J/psi Omega^-, where J/psi -> mu^+ mu^-, Omega^- -> Lambda K^-, and Lambda -> p pi^-, using 4.2 fb^{-1} of data from p\bar p collisions at sqrt{s}=1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0 * 10^{-8}, or 5.5 Gaussian standard deviations. The Omega^-_b mass is measured to be 6054.4 +/- 6.8 (stat.) +/- 0.9 (syst.) MeV/c^2. The lifetime of the Omega^-_b baryon is measured to be 1.13^{+0.53}_{-0.40}(stat.) +/- 0.02(syst.)$ ps. In addition, for the \Xi^-_b baryon we measure a mass of 5790.9 +/- 2.6(stat.) +/- 0.8(syst.) MeV/c^2 and a lifetime of 1.56^{+0.27}_{-0.25}(stat.) +/-0.02(syst.) ps. Under the assumption that the \Xi_b^- and \Omega_b^- are produced with similar kinematic distributions to the \Lambda^0_b baryon, we find sigma(Xi_b^-) B(Xi_b^- -> J/psi Xi^-)}/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.167^{+0.037}_{-0.025}(stat.) +/-0.012(syst.) and sigma(Omega_b^-) B(Omega_b^- -> J/psi Omega^-)/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.045^{+0.017}_{-0.012}(stat.) +/- 0.004(syst.) for baryons produced with transverse momentum in the range of 6-20 GeV/c.
Resumo:
C21H27NO2, Mr=325.5 , orthorhombic,P21212,, a = 7.516 (2), b = 13.430 (2), c =18.047 (2) A, U= 1821.79 A 3, Z = 4, D x =1.186 Mg m -a, 2(Cu Ka) = 1.5418 A, # = 0.56 mm -1, F(000) = 704, T= 293 K, final R = 0.04 for 1892 reflections with I _> 3a(I). Ring A is planar, and rings B and C adopt a chair conformation. Rings D and E are envelopes, with C(14) and C(17) displaced from their respective planes by 0.643 (3) and 0.482 (3)A. The ring system A/B shows quasi-trans fusion, whilst ring systems B/C and C/D are trans fused about C(8)-C(9) and C(13)-C(14) respectively. The D/E junction shows cis fusion.
Resumo:
C22H31NO2.H2 O, M r = 359" 5, orthorhombic,P2~212 ~, a= 10.032 (1), b= 11.186 (1), C = 17.980 (1)/~,, U= 2017.48/~3, Z = 4, D x = 1.276 Mg m -a, 2(Cu Kct) = 1.5418/~, # = 0.69 mm -~,F(000) = 784, T = 293 K. Final R = 0.05 for 1972 unique reflections with I > 3o(/). Ring A is planar, and rings B and C adopt a chair conformation. Rings D and E are envelopes, with C(14) and C(20) displaced from their respective ring planes by 0-616 (2) and 0.648 (3)/~. The A/B ring junction is quasi-trans,whilst ring systems B/C and C/D are trans fused about the bonds C(8)-C(9) and C(13)-C(14) respectively.The D/E junction shows cis fusion.
Resumo:
By the reaction of Ru2Cl(O2CAr)4 (1) and PPh3 in MeCN-H2O the diruthenium(II,III) and diruthenium(II) compounds of the type Ru2(OH2)Cl(MeCN)(O2CAr)4(PPh3)2 (2) and Ru2(OH2)(MeCN)2(O2CAr)4(PPh3)2 (3) were prepared and characterized by analytical, spectral, and electrochemical data (Ar is an aryl group, C6H4-p-X; X = H, OMe, Me, Cl, NO2). The molecular structure of Ru2(OH2)Cl(MeCN)(O2CC6H4-p-OMe)4(PPh3)2 was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.538 (5) angstrom, b = 15.650 (4) angstrom, c = 18.287 (7) angstrom, alpha = 101.39 (3)-degrees, beta = 105.99 (4)-degrees, gamma = 97.94 (3)-degrees, V = 3574 angstrom 3, Z = 2. The molecule is asymmetric, and the two ruthenium centers are clearly distinguishable. The Ru(III)-Ru(II), Ru(III)-(mu-OH2), and Ru(II)-(mu-OH2) distances and the Ru-(mu-OH2)-Ru angle in [{Ru(III)Cl(eta-1-O2CC6H4-p-OMe)(PPh3)}(mu-OH2)(mu-O2CC6H4-p-OMe)2{Ru(II)(MeCN)(eta-1-O2CC6H4-p-OMe)(PPh3)}] are 3.604 (1), 2.127 (8), and 2.141 (10) angstrom and 115.2 (5)-degrees, respectively. The compounds are paramagnetic and exhibit axial EPR spectra in the polycrystalline form. An intervalence transfer (IT) transition is observed in the range 900-960 nm in chloroform in these class II type trapped mixed-valence species 2. Compound 2 displays metal-centered one-electron reduction and oxidation processes near -0.4 and +0.6 V (vs SCE), respectively in CH2Cl2-TBAP. Compound 2 is unstable in solution phase and disproportionates to (mu-aquo)diruthenium(II) and (mu-oxo)diruthenium(III) complexes. The mechanistic aspects of the core conversion are discussed. The molecular structure of a diruthenium(II) compound, Ru2(OH2)(MeCN)2(O2CC6H4-p-NO2)4(PPh3)2.1.5CH2Cl2, was obtained by X-ray crystallography. The compound crystallizes in the space group P2(1)/c with a = 23.472 (6) angstrom, b = 14.303 (3) angstrom, c = 23.256 (7) angstrom, beta = 101.69 (2)-degrees, V = 7645 angstrom 3, and Z = 4. The Ru(II)-Ru(II) and two Ru(II)-(mu-OH2) distances and the Ru(II)-(mu-OH2)-Ru(II) angle in [{(PPh3)-(MeCN)(eta-1-O2CC6H4-p-NO2)Ru}2(mu-OH2)(mu-O2CC6H4-p-NO2)2] are 3.712 (1), 2.173 (9), and 2.162 (9) angstrom and 117.8 (4)-degrees, respectively. In both diruthenium(II,III) and diruthenium(II) compounds, each metal center has three facial ligands of varying pi-acidity and the aquo bridges are strongly hydrogen bonded with the eta-1-carboxylato facial ligands. The diruthenium(II) compounds are diamagnetic and exhibit characteristic H-1 NMR spectra in CDCl3. These compounds display two metal-centered one-electron oxidations near +0.3 and +1.0 V (vs SCE) in CH2Cl2-TBAP. The overall reaction between 1 and PPh3 in MeCN-H2O through the intermediacy of 2 is of the disproportionation type. The significant role of facial as well as bridging ligands in stabilizing the core structures is observed from electrochemical studies.
Resumo:
The microorganism Mucor piriformis transforms androst-4-ene-3,17-dione into a major and several minor metabolites. X-ray crystallographic analysis of two of these metabolites was undertaken to determine unambiguously their composition and chirality. Crystals belong to the orthorhombic space-group P2(1)2(1)2(1), with a = 7.199(4) angstrom and a = 6.023(3) angstrom, b = 11.719(3) angstrom and b = 13.455(4) angstrom, c = 20.409(3) angstrom and c = 20.702(4) angstrom for the two title compounds, respectively. The structures have been refined to final R values of 0.060 and 0.040, respectively.
Resumo:
AIMS An independent, powerful coronary heart disease (CHD) predictor is a low level of high-density lipoprotein cholesterol (HDL-C). Discoidal preβ-HDL particles and large HDL2 particles are the primary cholesterol acceptors in reverse cholesterol transport, a key anti-atherogenic HDL mechanism. The quality of HDL subspecies may provide better markers of HDL functionality than does HDL-C alone. We aimed I) to study whether alterations in the HDL subspecies profile exist in low-HDL-C subjects II) to explore the relationship of any changes in HDL subspecies profile in relation to atherosclerosis and metabolic syndrome; III) to elucidate the impact of genetics and acquired obesity on HDL subspecies distribution. SUBJECTS The study consisted of 3 cohorts: A) Finnish families with low HDL-C and premature CHD (Study I: 67 subjects with familial low HDL-C and 64 controls; Study II: 83 subjects with familial low HDL-C, 65 family members with normal HDL-C, and 133 controls); B) a cohort of 113 low- and 133 high-HDL-C subjects from the Health 2000 Health Examination Survey carried out in Finland (Study III); and C) a Finnish cohort of healthy young adult twins (52 monozygotic and 89 dizygotic pairs) (Study IV). RESULTS AND CONCLUSIONS The subjects with familial low HDL-C had a lower preβ-HDL concentration than did controls, and the low-HDL-C subjects displayed a dramatic reduction (50-70%) in the proportion of large HDL2b particles. The subjects with familial low HDL-C had increased carotid atherosclerosis measured as intima-media-thickness (IMT), and HDL2b particles correlated negatively with IMT. The reduction in both key cholesterol acceptors, preβ-HDL and HDL2 particles, supports the concept of impaired reverse cholesterol transport contributing to the higher CHD risk in low-HDL-C subjects. The family members with normal HDL-C and the young adult twins with acquired obesity showed a reduction in large HDL2 particles and an increase in small HDL3 particles, which may be the first changes leading to the lowering of HDL-C. The low-HDL-C subjects had a higher serum apolipoprotein E (apoE) concentration, which correlated positively with the metabolic syndrome components (waist circumference, TG, and glucose), highlighting the need for a better understanding of apoE metabolism in human atherosclerosis. In the twin study, the increase in small HDL3b particles was associated with obesity independent of genetic effects. The heritability estimate, of 73% for HDL-C and 46 to 63% for HDL subspecies, however, demonstrated a strong genetic influence. These results suggest that the relationship between obesity and lipoproteins depends on different elements in each subject. Finally, instead of merely elevating HDL-C, large HDL2 particles and discoidal preβ-HDL particles may provide beneficial targets for HDL-targeted therapy.
Resumo:
Texture evolution in h. c. p. (alpha) phase derived from aging of a differently processed metastable b.c.c. (beta) titanium alloy was investigated. The study was aimed at examining (i) the effect of different b. c. c. cold rolling textures and (ii) the effect of different defect structures on the h. c. p transformation texture. The alloy metastable beta alloy Ti-10V-4.5Fe-1.5Al was rolled at room temperature by unidirectional (UDR) and multi-step cross rolling (MSCR). A piece of the as-rolled materials were subjected to aging in order to derive the h. c. p. (alpha) phase. In the other route, the as-rolled materials were recrystallized and then aged. Textures were measured using X-ray as well as Electron Back Scatter Diffraction. Rolling texture of beta phase, as characterized by the presence of a strong gamma fibre, was found stronger in M S C R compared to UDR, although they were qualitatively similar. The stronger texture of MSCR sample could be attributed to the inhomogeneous deformation taking place in the sample that might contribute to weakening of texture. Upon recrystallization in beta phase field close to beta-transus. the textures qualitatively resembled the corresponding beta deformation textures; however, they got strengthed. The aging of differently beta rolled samples resulted in the product alpha-phase with different textures. The (UDR + Aged) sample had a stronger texture than (MSCR + Aged) sample, which could be due to continuation of defect accumulation in UDR sample, thus providing more potential sites for the nucleation of alpha phase. The trend was reversed in samples recrystallized prior to aging. The (MSCR + Recrystallized + Aged) sample showed stronger texture of alpha phase than the (UDR + Recrystallized + Aged) sample. This could be attributed to extensive defect annihilation in the UDR sample on recrystallization prior to aging. The (MSCR + Aged) sample exhibited more alpha variants when compared to (MSCR + Recrystallized + Aged) sample. This has been attributed to the availability of more potential sites for nucleation of alpha phase in the former. It could be concluded that alpha transformation texture depends mainly on the defect structure of the parent phase.
Resumo:
C13H12F3NO2, M(r) = 271.2, triclinic, P1BAR, a = 5.029 (2), b = 7.479 (2), c = 17.073 (5) angstrom, alpha = 97.98 (2), beta = 95.54 (3), gamma = 103.62 (3)-degrees, V = 612.4 (4) angstrom 3, Z = 2, D(m) = 1.463, D(x) = 1.471 g cm-3, lambda(Mo K-alpha) = 0.71069 angstrom, mu = 1.23 cm-1, F(000) = 280, T = 298 K, final R value is 0.041 for 2047 observed reflections with \F(omicron)\ greater-than-or-equal-to 6-sigma(\F(omicron)\). The N-C(sp2) bond length is 1.356 (2) angstrom. The N and C atoms of the ethylamino group deviate by < 0.15 angstrom from the plane of the aromatic ring. Short intramolecular contacts, C(3)...F(17) 2.668 (3) angstrom [H(3)...F(17) 2.39 (2) angstrom, C(3)-H(C3)...F(17) 98 (1)-degrees], C(5)...F(18) 3.074 (3) and C(5)...F(19) 3.077 (3) angstrom exist in the structure. The crystal structure is stabilized by intermolecular N-H...O hydrogen bonds with N(12)-H(N12) 0.79 (3), H(N12)...O(11)' 2.36 (3), N(12)...O(11)' (x - 1, y + 1, z) 3.105 (3) angstrom and N(12)-H(N12)...O(11)' 155 (2)-degrees.
Resumo:
Three new hydroxymethyl-linked non-natural disaccharide analogues, containing an additional methylene group in between the glycosidic linkage, were synthesized by utilizing 4-C-hydroxymethyl-alpha-D-glucopyranoside as the glycosyl donor. A kinetic study was undertaken to assess the hydrolytic stabilities of these new disaccharide analogues toward acid-catalyzed hydrolysis, at 60 degrees C and 70 degrees C. The studies showed that the disaccharide analogues were stable, by an order of magnitude, than naturally-occurring disaccharides, such as, cellobiose, lactose, and maltose. The first order rate constants were lower than that of methyl glycosides and the trend of hydrolysis rate constants followed that of naturally-occurring disaccharides. alpha-Anomer showed faster hydrolysis than the beta-anomer and the presence of axial hydroxyl group also led to faster hydrolysis among the disaccharide analogues. Energy minimized structures, derived through molecular modeling, showed that dihedral angles around the glycosidic bond in disaccharide analogues were nearly similar to that of naturally-occurring disaccharides. (C) 2011 Elsevier Ltd. All rights reserved.