987 resultados para Sedimentary-rocks
Resumo:
The ≈3,450-million-year-old Strelley Pool Formation in Western Australia contains a reef-like assembly of laminated sedimentary accretion structures (stromatolites) that have macroscale characteristics suggestive of biological influence. However, direct microscale evidence of biology—namely, organic microbial remains or biosedimentary fabrics—has to date eluded discovery in the extensively-recrystallized rocks. Recently-identified outcrops with relatively good textural preservation record microscale evidence of primary sedimentary processes, including some that indicate probable microbial mat formation. Furthermore, we find relict fabrics and organic layers that covary with stromatolite morphology, linking morphologic diversity to changes in sedimentation, seafloor mineral precipitation, and inferred microbial mat development. Thus, the most direct and compelling signatures of life in the Strelley Pool Formation are those observed at the microscopic scale. By examining spatiotemporal changes in microscale characteristics it is possible not only to recognize the presence of probable microbial mats during stromatolite development, but also to infer aspects of the biological inputs to stromatolite morphogenesis. The persistence of an inferred biological signal through changing environmental circumstances and stromatolite types indicates that benthic microbial populations adapted to shifting environmental conditions in early oceans.
Resumo:
A recent study has suggested that the decorated Bronze Age metalwork of South Scandinavia depicted the path of the sun through the sky during the day and through the sea at night. At different stages in its journey it was accompanied by a horse or a ship. Similar images are found in prehistoric rock art, and this paper argues that, whilst there are important differences between the images in these two media, they also signal some of the same ideas.
Resumo:
Conical sedimentary structures are widespread in the geological column. Those that are mediated by organisms (or organic matter) can be attributed to seven principal processes, which are investigated by experiment and/or field observations: (1) sand collapse into a cavity (decomposed body, open shaft, or gallery), (2) upward (escape) or downward locomotion by an organism through the sediment, (3) upward adjustment (equilibration), (4) casting of coelenterates' excavations, (5) organism-mediated soft-sediment deformation in heterolithic sediment, (6) biodeformational small and large excavations by organisms, and (7) fluid (gas or liquid) escape structures. Footprint loading may also be included. Criteria are given to distinguish between these processes. Dewatering pipes are best recognized by a zone of deformed and fluidized sediment at the base, and association with non-life (lethal) facies. Care must be used in assigning specimens to ichnotaxa, and it is generally necessary to slab, and also to carry out stratinomic investigation in the field.
Resumo:
Current models of Pleistocene fluvial system development and dynamics are assessed from the perspective of European Lower and Middle Palaeolithic stone tool assemblages recovered from fluvial secondary contexts. Fluvial activity is reviewed both in terms of Milankovitch-scale processes across the glacial/interglacial cycles of the Middle and Late Pleistocene, and in response to sub-Milankovitch scale, high-frequency, low-magnitude climatic oscillations. The chronological magnitude of individual phases of fluvial activity is explored in terms of radiocarbon-dated sequences from the Late Glacial and early Holocene periods. It is apparent that fluvial activity is associated with periods of climatic transition, both high and low magnitude, although system response is far more universal in the case of the high magnitude glacial/ interglacial transitions. Current geochronological tools do not permit the development of high-resolution sequences for Middle Pleistocene sediments, while localised erosion and variable system responses do not facilitate direct comparison with the ice core records. However, Late Glacial and early Holocene sequences indicate that individual fluvial activity phases are relatively brief in duration (e.g. 10(2) and 10(3) yr). From an archaeological perspective, secondary context assemblages can only be interpreted in terms of a floating geochronology, although the data also permit a reinvestigation of the problems of artefact reworking. Copyright (c) 2005 John Wiley I Sons, Ltd.
Resumo:
This paper describes the measurements of the acoustic and petrophysical properties of two suites of low-shale sandstone samples from North Sea hydrocarbon reservoirs, under simulated reservoir conditions. The acoustic velocities and quality factors of the samples, saturated with different pore fluids (brine, dead oil and kerosene), were measured at a frequency of about 0.8 MHz and over a range of pressures from 5 MPa to 40 MPa. The compressional-wave velocity is strongly correlated with the shear-wave velocity in this suite of rocks. The ratio V-P/V-S varies significantly with change of both pore-fluid type and differential pressure, confirming the usefulness of this parameter for seismic monitoring of producing reservoirs. The results of quality factor measurements were compared with predictions from Biot-flow and squirt-flow loss mechanisms. The results suggested that the dominating loss in these samples is due to squirt-flow of fluid between the pores of various geometries. The contribution of the Biot-flow loss mechanism to the total loss is negligible. The compressional-wave quality factor was shown to be inversely correlated with rock permeability, suggesting the possibility of using attenuation as a permeability indicator tool in low-shale, high-porosity sandstone reservoirs.
Resumo:
General circulation models (GCMs) use the laws of physics and an understanding of past geography to simulate climatic responses. They are objective in character. However, they tend to require powerful computers to handle vast numbers of calculations. Nevertheless, it is now possible to compare results from different GCMs for a range of times and over a wide range of parameterisations for the past, present and future (e.g. in terms of predictions of surface air temperature, surface moisture, precipitation, etc.). GCMs are currently producing simulated climate predictions for the Mesozoic, which compare favourably with the distributions of climatically sensitive facies (e.g. coals, evaporites and palaeosols). They can be used effectively in the prediction of oceanic upwelling sites and the distribution of petroleum source rocks and phosphorites. Models also produce evaluations of other parameters that do not leave a geological record (e.g. cloud cover, snow cover) and equivocal phenomena such as storminess. Parameterisation of sub-grid scale processes is the main weakness in GCMs (e.g. land surfaces, convection, cloud behaviour) and model output for continental interiors is still too cold in winter by comparison with palaeontological data. The sedimentary and palaeontological record provides an important way that GCMs may themselves be evaluated and this is important because the same GCMs are being used currently to predict possible changes in future climate. The Mesozoic Earth was, by comparison with the present, an alien world, as we illustrate here by reference to late Triassic, late Jurassic and late Cretaceous simulations. Dense forests grew close to both poles but experienced months-long daylight in warm summers and months-long darkness in cold snowy winters. Ocean depths were warm (8 degrees C or more to the ocean floor) and reefs, with corals, grew 10 degrees of latitude further north and south than at the present time. The whole Earth was warmer than now by 6 degrees C or more, giving more atmospheric humidity and a greatly enhanced hydrological cycle. Much of the rainfall was predominantly convective in character, often focused over the oceans and leaving major desert expanses on the continental areas. Polar ice sheets are unlikely to have been present because of the high summer temperatures achieved. The model indicates extensive sea ice in the nearly enclosed Arctic seaway through a large portion of the year during the late Cretaceous, and the possibility of sea ice in adjacent parts of the Midwest Seaway over North America. The Triassic world was a predominantly warm world, the model output for evaporation and precipitation conforming well with the known distributions of evaporites, calcretes and other climatically sensitive facies for that time. The message from the geological record is clear. Through the Phanerozoic, Earth's climate has changed significantly, both on a variety of time scales and over a range of climatic states, usually baldly referred to as "greenhouse" and "icehouse", although these terms disguise more subtle states between these extremes. Any notion that the climate can remain constant for the convenience of one species of anthropoid is a delusion (although the recent rate of climatic change is exceptional). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A wide range of issues relating to the presence and fate of pesticides and other micro-organic contaminants (MOCs) in surface freshwater sedimentary environments is reviewed. These issues include the sources, transport and occurrence of MOCs in freshwater environments; their ecological effects; their interaction with sedimentary material; and a range of processes related to their fate, including degradation, diffusion in bed sediments, bioturbation and slow contaminant release. An emphasis is placed on those processes-chemical, physical or biological-in which sediments play a role in determining the fate of micro-organics in freshwater environments. The issues of occurrence, source and transport, and the ecological effects of micro-organics are introduced more briefly, the focus where these aspects are concerned being largely on pesticides. In the concluding section, key points and issues relating to the study of micro-organics in freshwater environments are summarised and areas where initial or further research would be welcome are highlighted. It is hoped that this paper will both form a useful reference for workers in the field of micro-organic contaminants, and also stimulate new work in the freshwater environment and beyond. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Ways in which situated reasoning featured in the course of action in the setting of a pair-programming software design exercise is examined, and how interactionally design was accomplished as a coordinated activity in situ.
Resumo:
The slow component of quartz OSL exhibits a high thermal stability, and, in many of the samples studied, a high dose saturation level (several hundreds or, even thousands, of Grays). These properties suggest that the slow component has potential as a long-range dating tool. Initial attempts have been made to obtain equivalent doses for a number of sedimentary samples. Single- and multiple-aliquot techniques were modified for use with the slow component. The results indicate that there is a good potential for sediment dating, particularly for samples of significant age. Experiments concerning the optical resetting of the slow component suggest that, given its slow optical depletion rate, dating may be restricted to aeolian sediments.