955 resultados para SYMPATHETIC INNERVATION
Resumo:
The nature of armed conflict has changed dramatically in recent decades. In particular, it is increasingly the case that hostilities now occur alongside ‘everyday’ situations. This has led to a pressing need to determine when a ‘conduct of hostilities’ model (governed by international humanitarian law—IHL) applies and when a ‘law enforcement’ model (governed by international human rights law—IHRL) applies. This in turn raises the question of whether these two legal regimes are incompatible or whether they might be applied in parallel. It is on this question that the current paper focuses, examining it at the level of principle. Whilst most accounts of the principles underlying these two areas of law focus on humanitarian considerations, few have compared the role played by necessity in each. This paper seeks to address this omission. It demonstrates that considerations of necessity play a prominent role in both IHL and IHRL, albeit with differing consequences. It then applies this necessity-based analysis to suggest a principled basis for rationalising the relationship between IHL and IHRL, demonstrating how this approach would operate in practice. It is shown that, by emphasising the role of necessity in IHL and IHRL, an approach can be adopted that reconciles the two in a manner that is sympathetic to their object and purpose.
Resumo:
Background Psychophysiological theories suggest that individuals with anxiety disorders may evidence inflexibility in their autonomic activity at rest and when responding to stressors. In addition, theories of social anxiety disorder, in particular, highlight the importance of physical symptoms. Research on autonomic activity in childhood (social) anxiety disorders, however, is scarce and has produced inconsistent findings, possibly because of methodological limitations. Method The present study aimed to account for limitations of previous studies and measured respiratory sinus arrhythmia (RSA) and heart rate (HR) using Actiheart heart rate monitors and software (Version 4) during rest and in response to a social and a non-social stressor in 60 anxious (30 socially anxious and 30 ‘other’ anxious), and 30 nonanxious sex-and age-matched 7–12 year olds. In addition, the effect of state anxiety during the tasks was explored. Results No group differences at rest or in response to stress were found. Importantly, however, with increases in state anxiety, all children, regardless of their anxiety diagnoses showed less autonomic responding (i.e., less change in HR and RSA from baseline in response to task) and took longer to recover once the stressor had passed. Limitations This study focused primarily on parasympathetic arousal and lacked measures of sympathetic arousal. Conclusion The findings suggest that childhood anxiety disorders may not be characterized by inflexible autonomic responding, and that previous findings to the contrary may have been the result of differences in subjective anxiety between anxious and nonanxious groups during the tasks, rather than a function of chronic autonomic dysregulation.
Resumo:
Meissner corpuscles and Merkel cell neurite complexes are highly specialized mechanoreceptors present in the hairy and glabrous skin, as well as in different types of mucosa. Several reports suggest that after injury, such as after nerve crush, freeze injury, or dissection of the nerve, they are able to regenerate, particularly including reinnervation and repopulation of the mechanoreceptors by Schwann cells. However, little is known about mammalian cells responsible for these regenerative processes. Here we review cellular origin of this plasticity in the light of newly described adult neural crest-derived stem cell populations. We also discuss further potential multipotent stem cell populations with the ability to regenerate disrupted innervation and to functionally recover the mechanoreceptors. These capabilities are discussed as in context to cellularly reprogrammed Schwann cells and tissue resident adult mesenchymal stem cells.
Resumo:
In this study the baroreflex sensitivity of conscious, juvenile, spontaneously hypertensive rats (SHRs) was compared. The study population consisted of 19 eight-week-old male SHRs. The baroreflex sensitivity was quantified as the derivative of the variation in heart rate (HR) and the variation of mean arterial pressure (baroreflex sensitivity = Delta HR/Delta MAP). MAP was manipulated with sodium nitroprusside (SNP) and phenylephrine (PHE), administered via an inserted cannula in the right femoral vein. The SHRs were divided into four groups: (1) low bradycardic baroreflex (LB) where the baroreflex gain (BG) was between 0 and 1 bpm/mmHg with PHE; (2) high bradycardic baroreflex (HB), where the BG was < -1 bpm/mmHg with PHE; (3) low tachycardic baroreflex (LT) where the BC was between 0 and 3 bpm/mmHg with SNP; (4) high tachycardic baroreflex (HT) where the BG was > 3 bpm/mmHg with SNP. We noted that 36.8% of the rats presented with an increased bradycardic reflex, while 27.8% demonstrated an attenuated tachycardic reflex. No significant alterations were noted regarding the basal MAP and HR. There were significant differences in the baroreflex sensitivity between SHRs in the same laboratory. One should be careful when interpreting studies employing the SHR as a research model.
Resumo:
Diabetes mellitus is the most common endocrine disturbance of domestic carnivores and can cause autonomic neurological disorders, although these are still poorly understood in veterinary medicine. There is little information available on the quantitative adaptation mechanisms of the sympathetic ganglia during diabetes mellitus in domestic mammals. By combining morphometric methods and NADPH-diaphorase staining (as a possible marker for nitric oxide producing neurons), type I diabetes mellitus-related morphoquantitative changes were investigated in the celiac ganglion neurons in dogs. Twelve left celiac ganglia from adult female German shepherd dogs were examined: six ganglia were from non-diabetic and six from diabetic subjects. Consistent hypertrophy of the ganglia was noted in diabetic animals with increase of 55% in length, 53% in width, and 61.5% in thickness. The ordinary microstructure of the ganglia was modified leading to an uneven distribution of the ganglionic units and a more evident distribution of axon fascicles. In contrast to non-diabetic dogs, there was a lack of NADPH-diaphorase perikarial labelling in the celiac ganglion neurons of diabetic animals. The morphometric study showed that both the neuronal and nuclear sizes were significantly larger in diabetic dogs (1.3 and 1.39 times, respectively). The profile density and area fraction of NADPH-diaphorase-reactive celiac ganglion neurons were significantly larger (1.35 and 1.48 times, respectively) in non-diabetic dogs compared to NADPH-diaphorase-non-reactive celiac ganglion neurons in diabetic dogs. Although this study suggests that diabetic neuropathy is associated with neuronal hypertrophy, controversy remains over the possibility of ongoing neuronal loss and the functional interrelationship between them. It is unclear whether neuronal hypertrophy could be a compensation mechanism for a putative neuronal loss during the diabetes mellitus. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The present study investigated the effects of exercise training on arterial pressure, baroreflex sensitivity, cardiovascular autonomic control and metabolic parameters on female LDL-receptor knockout ovariectomized mice. Mice were divided into two groups: sedentary and trained. Trained group was submitted to an exercise training protocol. Blood cholesterol was measured. Arterial pressure (AP) signals were directly recorded in conscious mice. Baroreflex sensitivity was evaluated by tachycardic and bradycardic responses to AP changes. Cardiovascular autonomic modulation was measured in frequency (FFT) and time domains. Maximal exercise capacity was increased in trained as compared to sedentary group. Blood cholesterol was diminished in trained mice (191 +/- 8 mg/dL) when compared to sedentary mice (250 +/- 9 mg/dL, p<0.05). Mean AP and HR were reduced in trained group (101 +/- 3 mmHg and 535 +/- 14 bpm, p<0.05) when compared with sedentary group (125 +/- 3 mmHg and 600 +/- 12 bpm). Exercise training induced improvement in bradycardic reflex response in trained animals (-4.24 +/- 0.62 bpm/mmHg) in relation to sedentary animals (-1.49 +/- 0.15 bpm/mmHg, p<0.01); tachycardic reflex responses were similar between studied groups. Exercise training increased the variance (34 +/- 8 vs. 6.6 +/- 1.5 ms(2) in sedentary, p<0.005) and the high-frequency band (HF) of the pulse interval (IP) (53 +/- 7% vs. 26 +/- 6% in sedentary, p<0.01). It is tempting to speculate that results of this experimental study might represent a rationale for this non-pharmacological intervention in the management of cardiovascular risk factors in dyslipidemic post-menopause women. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Centrally injected histamine (HA) affects heart rate (HR), arterial blood pressure (BP), and sympathetic activity in rats. The posterodorsal medial amygdala (MePD) has high levels of histidine decarboxylase, connections with brain areas involved with the modulation of cardiovascular responses, and is relevant for the pathogenesis of hypertension. However, there is no report demonstrating the role of the MePD histaminergic activity on the cardiovascular function in awake rats. The alms of the present work were: 1) to study the effects of two doses (10-100 nM) of HA microinjected in the MePD on basal cardiovascular recordings and on baroreflex- and chemoreflex-mediated responses; 2) to reveal whether cardiovascular reflex responses could be affected by MePD microinjections of (R)-alpha-methylhistamine (AH(3)), an agonist of the inhibitory autoreceptor H(3); and, 3) to carry out a power spectral analysis to evaluate the contribution of the sympathetic and parasympathetic components in the variability of the HR and BP recordings. When compared with the control group (microinjected with saline, 0.3 mu l), HA (10 nM) promoted an increase in the MAP(50), i.e. the mean value of BP at half of the HR range evoked by the baroreflex response. Histamine (100 nM) did not affect the baroreflex activity, but significantly decreased the parasympathetic component of the HR variability, increased the sympathetic/parasympathetic balance at basal conditions (these two latter evaluated by the power spectral analysis), and promoted an impairment in the chemoreflex bradycardic response. Microinjection of AH(3) (10 mu M) led to mixed results, which resembled the effects of both doses of HA employed here. Present data suggest that cardiovascular changes induced by baroreceptors and chemoreceptors involve the histaminergic activity in the MePD. This neural regulation of reflex cardiovascular responses can have important implications for homeostatic and allostatic conditions and possibly for the behavioral displays modulated by the rat MePD. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: The aim of this study was to investigate the effects of exercise training on cardiovascular autonomic dysfunction in ovariectomized rats submitted to myocardial infarction. Methods: Female Wistar rats were divided into the following ovariectomized groups: sedentary ovariectomized (SO), trained ovariectomized (TO), sedentary ovariectomized infarcted (SOI), and trained ovariectomized infarcted (TOI). Trained groups were submitted to an exercise training protocol on a treadmill (8 wk). Arterial baroreflex sensitivity was evaluated by heart rate responses to arterial pressure changes, and cardiopulmonary baroreflex sensitivity was tested by bradycardic and hypotension responses to serotonin injection. Vagal and sympathetic effects were calculated by pharmacological blockade. Results: Arterial pressure was reduced in the TO in comparison with the SO group and increased in the TOI in relation to the SOI group. Exercise training improved the baroreflex sensitivity in both the TO and TOI groups. The TOI group displayed improvement in cardiopulmonary reflex sensitivity compared with the SOI group at the 16 mu g/kg serotonin dose. Exercise training enhanced the vagal effect in both the TO (45%) and TOI (46%) animals compared with the SO and SOI animals and reduced the sympathetic effect in the TOI (38%) in comparison with the SOI animals. Significant correlations were obtained between bradycardic baroreflex responses and vagal (r = -0.7, P < 0.005) and sympathetic (r = 0.7, P < 0.001) effects. Conclusions: These results indicate that exercise training in ovariectomized rats submitted to myocardial infarction improves resting hemodynamic status and reflex control of the circulation, which may be due to an increase in the vagal component. This suggests a homeostatic role for exercise training in reducing the autonomic impairment of myocardial infarction in postmenopausal women.
Resumo:
P>1. Impairmant of baroreflex sensitivity (BRS) has been implicated in the reduction of heart rate variability (HRV) and in the increased risk of death after myocardial infarction (MI). In the present study, we investigated whether the additional impairment in BRS induced by sinoaortic baroreceptor denervation (SAD) in MI rats is associated with changes in the low-frequency (LF) component of HRV and increased mortality rate. 2. Rats were randomly divided into four groups: control, MI, denervated (SAD) and SAD + MI rats. Left ventricular (LV) function was evaluated by echocardiography. Autonomic components were assessed by power spectral analysis and BRS. 3. Myocardial infarction (90 days) reduced ejection fraction (by similar to 42%) in both the MI and SAD + MI groups; however, an increase in LV mass and diastolic dysfunction were observed only in the SAD + MI group. Furthermore, BRS, HRV and the LF power of HRV were reduced after MI, with an exacerbated reduction seen in SAD + MI rats. The LF component of blood pressure variability (BPV) was increased in the MI, SAD and SAD + MI groups compared with the control group. Mortality was higher in the MI groups compared with the non-infarcted groups, with an additional increase in mortality in the SAD + MI group compared with the MI group. Correlations were obtained between BRS and the LF component of HRV and between LV mass and the LF component of BPV. 4. Together, the results indicate that the abolishment of BRS induced by SAD in MI rats further reduces the LF band of HRV, resulting in a worse cardiac remodelling and increased mortality in these rats. These data highlight the importance of this mechanism in the prognosis of patients after an ischaemic event.
Resumo:
P>1. Clinical and experimental evidence highlights the importance of the renin-angiotensin system in renovascular hypertension. Furthermore, genetic factors affecting angiotensin-converting enzyme (ACE) could influence the development of renovascular hypertension. 2. To test the effect of small gene perturbations on the development of renovascular hypertension, mice harbouring two or three copies of the Ace gene were submitted to 4 weeks of two-kidney, one-clip (2K1C) hypertension. Blood pressure (BP), cardiac hypertrophy, baroreflex sensitivity and blood pressure and heart rate variability were assessed and compared between the different groups. 3. The increase in BP induced by 2K1C was higher in mice with three copies of the Ace gene compared with mice with only two copies (46 vs 23 mmHg, respectively). Moreover, there was a 3.8-fold increase in the slope of the left ventricle mass/BP relationship in mice with three copies of the Ace gene. Micewith three copies of the Ace gene exhibited greater increases in cardiac and serum ACE activity than mice with only two copies of the gene. Both baroreflex bradycardia and tachycardia were significantly depressed in mice with three copies of the Ace gene after induction of 2K1C hypertension. The variance in basal systolic BP was greater in mice with three copies of the Ace gene after 2K1C hypertension compared with those with only two copies of the gene (106 vs 54%, respectively). In addition, the low-frequency component of the pulse interval was higher mice with three copies of the Ace gene after 2K1C hypertension compared with those with only two (168 vs 86%, respectively). Finally, in mice with three copies of the Ace gene, renovascular hypertension induced a 6.1-fold increase in the sympathovagal balance compared with a 3.2-fold increase in mice with only two copies of the gene. 4. Collectively, these data provide direct evidence that small genetic disturbances in ACE levels per se have an influence on haemodynamic, cardiac mass and autonomic nervous system responses in mice under pathological perturbation.
Resumo:
In mammals, the production of melatonin by the pineal gland is mainly controlled by the suprachiasmatic nuclei (SCN), the master clock of the circadian system. We have previously shown that agents involved in inflammatory responses, such as cytokines and corticosterone, modulate pineal melatonin synthesis. The nuclear transcription factor NFKB, detected by our group in the rat pineal gland, modulates this effect. Here, we evaluated a putative constitutive role for the pineal gland NFKB pathway. Male rats were kept under 12 h: 12 h light-dark (LD) cycle or under constant darkness (DD) condition. Nuclear NFKB was quantified by electrophoretic mobility shift assay on pineal glands obtained from animals killed throughout the day at different times. Nuclear content of NFKB presented a daily rhythm only in LD-entrained animals. During the light phase, the amount of NFKB increased continuously, and a sharp drop occurred when lights were turned off. Animals maintained in a constant light environment until ZT 18 showed diurnal levels of nuclear NFKB at ZT15 and ZT18. Propranolol (20 mg/kg, i.p., ZT 11) treatment, which inhibits nocturnal sympathetic input, impaired nocturnal decrease of NFKB only at ZT18. A similar effect was observed in free-running animals, which secreted less nocturnal melatonin. Because melatonin reduces constitutive NFKB activation in cultured pineal glands, we propose that this indolamine regulates this transcription factor pathway in the rat pineal gland, but not at the LD transition. The controversial results regarding the inhibition of pineal function by constant light or blocking sympathetic neurotransmission are discussed according to the hypothesis that the prompt effect of lights-off is not mediated by noradrenaline, which otherwise contributes to maintaining low levels of nuclear NFKB at night. In summary, we report here a novel transcription factor in the pineal gland, which exhibits a constitutive rhythm dependent on environmental photic information. (Author correspondence: rpmarkus@usp.br)
Resumo:
The dorsal premammillary nucleus (PMd) is one of the most responsive hypothalamic sites during exposure to a predator or its odor, and to a context previously associated with a predatory threat; and lesions or pharmacological inactivation centered therein severely reduced the anti-predatory defensive responses. Previous studies have shown that beta adrenergic transmission in the PMd seems critical to the expression of fear responses to predatory threats. In the present study, we have investigated the putative sources of catecholaminergic inputs to the PMd. To this end, we have first described the general pattern of catecholaminergic innervation of the PMd by examining the distribution and morphology of the tyrosine hydroxylase (TH) immunoreactive fibers in the nucleus; and next, combining Fluoro Gold (FG) tracing experiments and TH immunostaining, we determined the putative sources of catecholaminergic inputs to the nucleus. Our results revealed that the PMd presents a moderately dense plexus of catecholaminergic fibers that seems to encompass the rostral pole and ventral border of the nucleus. Combining the results of the FG tract-tracing and TH immunostaining, we observed that the locus coeruleus was the sole brain site that contained double FG and TH immunostained cells. In summary, the evidence suggests that the locus coeruleus is seemingly a part of the circuit responding to predatory threats, and, as shown by the present results, is the sole source of catecholaminergic inputs to the PMd, providing noradrenergic inputs to the nucleus, which, by acting via beta adrenoceptor, seems to be critical for the expression of anti-predatory responses. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Mandibular movements occur through the triggering of trigeminal motoneurons. Aberrant movements by orofacial muscles are characteristic of orofacial motor disorders, such as nocturnal bruxism (clenching or grinding of the dentition during sleep). Previous studies have suggested that autonomic changes occur during bruxism episodes. Although it is known that emotional responses increase jaw movement, the brain pathways linking forebrain limbic nuclei and the trigeminal motor nucleus remain unclear. Here we show that neurons in the lateral hypothalamic area, in the central nucleus of the amygdala, and in the parasubthalamic nucleus, project to the trigeminal motor nucleus or to reticular regions around the motor nucleus (Regio h) and in the mesencephalic trigeminal nucleus. We observed orexin co-expression in neurons projecting from the lateral hypothalamic area to the trigeminal motor nucleus. In the central nucleus of the amygdala, neurons projecting to the trigeminal motor nucleus are innervated by corticotrophin-releasing factor immunoreactive fibers. We also observed that the mesencephalic trigeminal nucleus receives dense innervation from orexin and corticotrophin-releasing factor immunoreactive fibers. Therefore, forebrain nuclei related to autonomic control and stress responses might influence the activity of trigeminal motor neurons and consequently play a role in the physiopathology of nocturnal bruxism.
Resumo:
Calomys callosus is a wild, native forest rodent found in South America. In Brazil, this species has been reported to harbour the parasitic protozoan Trypanosoma cruzi. The ganglionated plexus of this species was studied using whole-mount preparations of trachea that were stained using histological and histochemical methods. The histological methods were used to determine the position of the ganglia with respect to the trachea muscle and to determine the presence of elastic and collagen fibers. The histochemical method of NADH-diaphorase was used for morphometric evaluations of the plexus. The tracheal plexus lies exclusively over the muscular part of the organ, dorsal to the muscle itself. It varies in pattern and extent between animals. The average number of neurons was 279 and the cellular profile area ranged from 38.37 mu m(2) to 805.89 mu m(2). Acetylcholinesterase (AChE) histochemistry verified that both ganglia and single neurons lie along nerve trunks and are reciprocally interconnected with the plexus. Intensely AChE-reactive neurons were found to be intermingled with poorly reactive ones. Two longitudinal AChE-positive nerve trunks were also observed and there was a diverse number of ganglia along the intricate network of nerves interconnecting the trunks. A ganglion capsule of collagen and elastic fibers surrounding the neurons was observed. Under polarized light, the capsule appeared to be formed by Type I collagen fibers. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to evaluate the effects of regular physical activity on the morphology of the myenteric plexus of the duodenum in rats during the ageing process. To this end, 45 Wistar rats were divided into three groups: C (sedentary - 6 months old), S (sedentary - 12 months old) and T (trained - 12 months old). The animals of group S were given with a physical activity programme consisting of a 10-min-treadmill workout once a week. The animals of group T were submitted to the physical activity programme five times a week. Their duodenums were collected and submitted to the techniques of nicotinamide adenine dinucleotide (NADH)-diaphorase enzyme histochemistry for whole-mount preparations and transmission electron microscopy. No differences in the constitution of the myenteric plexuses were found when the sedentary and trained groups were compared with the control group. The ultrastructural features were similar for the three groups. However, it was verified that the physical activity of the trained animals resulted in a similar myenteric neuron morphology to that of the adult animals (6 months old), thereby confirming its beneficial effect, as the sedentary animals had larger alterations in the collagen fibrils and the basal membrane that occur through ageing. The quantitative analysis showed that the NADH-diaphorase positive neurons decreased with ageing and increased with physical activity (P > 0.05). No significant alteration (P > 0.05) in the neuronal profile area of the NADH-diaphorase positive neurons has been observed with ageing.