832 resultados para SWNT-PEG
Resumo:
The processes of adsorption of grafted copolymers onto negatively charged surfaces were studied using a dissipative quartz crystal microbalance (D-QCM) and ellipsometry. The control parameters in the study of the adsorption are the existence or absence on the molecular architecture of grafted polyethyleneglycol (PEG) chains with different lengths and the chemical nature of the main chain, poly(allylamine) (PAH) or poly(L-lysine) (PLL). It was found out that the adsorption kinetics of the polymers showed a complex behavior. The total adsorbed amount depends on the architecture of the polymer chains (length of the PEG chains), on the polymer concentration and on the chemical nature of the main chain. The comparison of the thicknesses of the adsorbed layers obtained from D-QCM and from ellipsometry allowed calculation of the water content of the layers that is intimately related to the grafting length. The analysis of D-QCM results also provides information about the shear modulus of the layers, whose values have been found to be typical of a rubber-like polymer system. It is shown that the adsorption of polymers with a charged backbone is not driven exclusively by the electrostatic interactions, but the entropic contributions as a result of the trapping of water in the layer structure are of fundamental importance.
Resumo:
INTRODUCTION: The EVA (Endoscopic Video Analysis) tracking system a new tracking system for extracting motions of laparoscopic instruments based on non-obtrusive video tracking was developed. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. METHODS: EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical centre to track the 3D position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. RESULTS: Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics such as path length (p=0,97), average speed (p=0,94) or economy of volume (p=0,85), proving the viability of EVA. CONCLUSIONS: EVA has been successfully used in the training setup showing potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and in image guided surgery.
Resumo:
INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.
Resumo:
The present work covers the first validation efforts of the EVA Tracking System for the assessment of minimally invasive surgery (MIS) psychomotor skills. Instrument movements were recorded for 42 surgeons (4 expert, 22 residents, 16 novice medical students) and analyzed for a box trainer peg transfer task. Construct validation was established for 7/9 motion analysis parameters (MAPs). Concurrent validation was determined for 8/9 MAPs against the TrEndo Tracking System. Finally, automatic determination of surgical proficiency based on the MAPs was sought by 3 different approaches to supervised classification (LDA, SVM, ANFIS), with accuracy results of 61.9%, 83.3% and 80.9% respectively. Results not only reflect on the validation of EVA for skills? assessment, but also on the relevance of motion analysis of instruments in the determination of surgical competence.
Resumo:
The surface force apparatus was used to measure directly the molecular forces between streptavidin and lipid bilayers displaying grafted Mr 2,000 poly(ethylene glycol) (PEG). These measurements provide direct evidence for the formation of relatively strong attractive forces between PEG and protein. At low compressive loads, the forces were repulsive, but they became attractive when the proteins were pressed into the polymer layer at higher loads. The adhesion was sufficiently robust that separation of the streptavidin and PEG uprooted anchored polymer from the supporting membrane. These interactions altered the properties of the grafted chains. After the onset of the attraction, the polymer continued to bind protein for several hours. The changes were not due to protein denaturation. These data demonstrate directly that the biological activity of PEG is not due solely to properties of simple polymers such as the excluded volume. It is also coupled to the competitive interactions between solvent and other materials such as proteins for the chain segments and to the ability of this material to adopt higher order intrachain structures.
Resumo:
The effect of different total enzyme concentrations on the flux through the bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in vitro was determined by measuring PTS-mediated carbohydrate phosphorylation at different dilutions of cell-free extract of Escherichia coli. The dependence of the flux on the protein concentration was more than linear but less than quadratic. The combined flux–response coefficient of the four enzymes constituting the glucose PTS decreased slightly from values of ≈1.8 with increasing protein concentrations in the assay. Addition of the macromolecular crowding agents polyethylene glycol (PEG) 6000 and PEG 35000 led to a sharper decrease in the combined flux–response coefficient, in one case to values of ≈1. PEG 6000 stimulated the PTS flux at lower protein concentrations and inhibited the flux at higher protein concentrations, with the transition depending on the PEG 6000 concentration. This suggests that macromolecular crowding decreases the dissociation rate constants of enzyme complexes. High concentrations of the microsolute glycerol did not affect the combined flux–response coefficient. The data could be explained with a kinetic model of macromolecular crowding in a two-enzyme group-transfer pathway. Our results suggest that, because of the crowded environment in the cell, the different PTS enzymes form complexes that live long on the time-scale of their turnover. The implications for the metabolic behavior and control properties of the PTS, and for the effect of macromolecular crowding on nonequilibrium processes, are discussed.
Resumo:
Polyethylene glycol (PEG), which is often used to impose low water potentials (ψw) in solution culture, decreases O2 movement by increasing solution viscosity. We investigated whether this property causes O2 deficiency that affects the elongation or metabolism of maize (Zea mays L.) primary roots. Seedlings grown in vigorously aerated PEG solutions at ambient solution O2 partial pressure (pO2) had decreased steady-state root elongation rates, increased root-tip alanine concentrations, and decreased root-tip proline concentrations relative to seedlings grown in PEG solutions of above-ambient pO2 (alanine and proline accumulation are responses to hypoxia and low ψw, respectively). Measurements of root pO2 were made using an O2 microsensor to ensure that increased solution pO2 did not increase root pO2 above physiological levels. In oxygenated PEG solutions that gave maximal root elongation rates, root pO2 was similar to or less than (depending on depth in the tissue) pO2 of roots growing in vermiculite at the same ψw. Even without PEG, high solution pO2 was necessary to raise root pO2 to the levels found in vermiculite-grown roots. Vermiculite was used for comparison because it has large air spaces that allow free movement of O2 to the root surface. The results show that supplemental oxygenation is required to avoid hypoxia in PEG solutions. Also, the data suggest that the O2 demand of the root elongation zone may be greater at low relative to high ψw, compounding the effect of PEG on O2 supply. Under O2-sufficient conditions root elongation was substantially less sensitive to the low ψw imposed by PEG than that imposed by dry vermiculite.
Resumo:
Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.
Resumo:
Atualmente, o Brasil é o maior produtor de cana-de-açúcar (Saccharum ssp.), no qual o estado de São Paulo é responsável por mais de 50% da produção. Esta cultura é hospedeira de diversos patógenos que podem limitar sua produção, dentre os quais se destaca a bactéria Leifsonia xyli subsp. xyli (Lxx), agente causal do raquitismo da soqueira (ratoon stunting disease - RSD). Pouco se sabe sobre a fisiologia deste organismo e quais as estratégias utilizadas por este para colonizar seu hospedeiro. No entanto, sabemos que para infectar e colonizar seus hospedeiros, é necessário que bactérias parasíticas superem estresses de diversas naturezas impostas durante estes processos, como os estresses oxidativo e o osmótico. Neste contexto, os objetivos deste trabalho foram identificar in silico e analisar a expressão in vitro, por qPCR, de genes relacionados a estes dois estresses. Uma análise da sequência do genoma de Lxx identificou 35 genes, sendo 8 relacionados ao estresse oxidativo, 9 relacionados ao estresse osmótico e 11 relacionados a estresse gerais, incluindo um cluster de 6 genes envolvidos na síntese de carotenoides. A expressão destes foi avaliada 60 minutos após exposição a 30mM de H2O2 ou 7% (p/v) de polietilenoglicol 6000 (PEG 6000). Sete genes foram avaliados como normalizadores das reações de qPCR. A quantificação do grau de peroxidação lipídica indicou que ambos os tratamentos resultaram em sensível peroxidação, muito embora o efeito do tratamento com PEG 6000 tenha sido maior do que o tratamento com H2O2. A exposição ao H2O2 aumentou a expressão dos genes katA (catalase), sodA (superóxido dismutase), msrA (Sulfóxido de metionina redutase) e msrB (Sulfóxido de metionina redutase) bem como de todos os genes responsáveis pela síntese de carotenoides. Por outro lado, todos os genes relacionados ao estresse osmótico foram menos expressos na presença deste composto. Já quando a bactéria foi exposta a PEG 6000, o oposto ocorreu, ou seja, os genes relacionados ao estresse osmótico, que são otsA (Trealose-6-fosfato sintase), otsB (Trealose fosfatase), treY (Malto-oligosil trealose sintase), treZ (Malto-oligosil trealose trealoidrolase), treS (Trealose sintase), proX (Proteína de ligamento em substrato, tipo ABC glicina betaína transportadora), proW (Proteína permease, tipo ABC glicina betaína transportadora), proZ (Proteína permease, tipo ABC glicina betaína transportadora) e Naggn (Amidotransferase), além dos genes do cluster carotenoide, foram mais expressos, ao passo que alguns dos genes ligados à resposta ao estresse oxidativo foram menos expressos. Verificou-se também, através de PCR convencional utilizando primers para amplificar as regiões entre os genes carotenoides, que estes são expressos como um RNA policistrônico, constituindo assim um operon. Estes resultados validam predições anteriores baseadas na análise in silico da sequência do genoma de Lxx, confirmando que Lxx possui mecanismos responsivos aos estresses osmótico e oxidativo aos quais é submetida durante o processo de infecção de seu hospedeiro.
Resumo:
A espécie endêmica G. elliptica R. E. Fries não apresentava estudos fitoquímicos e biológicos detalhados na literatura. Assim, o objetivo desse trabalho foi avaliar a composição química e as propriedades biológicas dos óleos essenciais, extratos brutos, alcaloides totais, tortas, frações das tortas, amostras isoladas dessa espécie. O material vegetal foi coletado em Paranapiacaba (Santo André, SP, Brasil). O óleo essencial extraído das folhas por destilação à vapor apresentou um rendimento de 0,2%. A análise histológica das folhas encontrou óleo em células oleíferas localizadas no parênquima esponjoso. A composição do óleo (CG-EM) indicou espatulenol e óxido de cariofileno como compostos majoritários. Os alcaloides totais foram obtidos dos extratos brutos das folhas e dos galhos e analisados por CG-EM, identificando quatro aporfinas (nornuciferina, estefarina, corituberina e asimilobina) e duas protoberberinas (discretamina e caseadina). Os alcaloides totais foram fracionados em coluna cromatográfica ou por Extração em Fase Sólida e purificados por cromatografia em camada preparativa, originando duas amostras (Amostra 9 e 10). Na Amostra 9, foram identificados dois alcaloides aporfinicos nornuciferina e asimilobina (CG-EM e RMN-1H). Na Amostra 10, foram identificados (LC-EM/EM) cinco alcaloides aporfínicos (desidronantenina, glaunidina, liriodenina, N-óxido de oliverina e telikovina) e um alcaloide protoberberínico (caseadina). Caseadina, glaunidina, N-óxido de oliverina e telikovina não foram previamente identificados em Guatteria. Os resíduos dos extratos brutos livres de alcaloides foram fracionados pelo método de partição com solventes de polaridade crescente. Os extratos brutos e as frações acetato de etila e butanólicas de folhas e galhos apresentaram flavonoides (NP-PEG). Nos ensaios biológicos, a melhor atividade antioxidante (sequestro do radical DPPH) foi encontrada para a fração clorofórmica dos galhos (EC50=24,25±1,14 µg/mL) e a torta dos galhos (EC50=26,23±4,20 µg/mL). No ensaio antimicrobiano pelo método turbidimétrico a atividade mais importante foi obtida contra Staphylococcus aureus (ATCC 6538) para os alcaloides totais dos galhos (CIM/CBM=0,12±0,01/0,26 mg/mL) e das folhas (CIM/CBM=0,21±0,01/0,28 mg/mL), e fração hexânica das folhas (CIM/CBM=0,24±0,02/>1 mg/mL). Uma alta atividade antitumoral foi observada frente a células humanas de mama (MCF-7) para Amostra 10 (IC50=2,28±0,18 µg/mL), fração de acetato de etila das folhas (IC50=4,47±0,40 µg/mL), óleo essencial (IC50=7,01±0,23 µg/mL) e os alcaloides totais das folhas (IC50=9,32±0,36 µg/mL). Para as células de próstata (PC-3), foi encontrada atividade para a Amostra 10 (IC50=1,37±0,36 µg/mL) e o óleo essencial (IC50=5,32±0,35 µg/mL). A futura aplicação dos extratos e frações de G. elliptica como um agente antitumoral parece ser segura, pois mantiveram uma viabilidade celular maior do que 90% no ensaio de citotoxicidade com culturas de fibroblasto murino (BALB/c 3T3, ATCC CCL-163) nas concentrações onde a atividade antitumoral foi promissora (<30 µg/mL) contra MCF-7 e/ou PC-3.
Resumo:
We present the first far-IR observations of the solar-type stars δ Pav, HR 8501, 51 Peg and ζ^2 Ret, taken within the context of the DUNES Herschel open time key programme (OTKP). This project uses the PACS and SPIRE instruments with the objective of studying infrared excesses due to exo-Kuiper belts around nearby solar-type stars. The observed 100 μm fluxes from δ Pav, HR 8501, and 51 Peg agree with the predicted photospheric fluxes, excluding debris disks brighter than L_dust/L_* ~ 5 x 10^-7 (1σ level) around those stars. A flattened, disk-like structure with a semi-major axis of ~100 AU in size is detected around ζ2 Ret. The resolved structure suggests the presence of an eccentric dust ring, which we interpret as an exo-Kuiper belt with L_dust/L_* ≈ 10^-5.
Resumo:
The more advantageous hepatitis C virus (HCV) inhibitors (most of them incorporating polysubstituted prolines or pyrrolidines) are detailed in this paper. The improvement of current treatments by combination of antiviral drugs is the driving force of this race to reduce the fast proliferation of this virus. The enhancement of efficiency in short periods of treatment is crucial in the economical point of view and for the hope of all infected people. New protease or polymerase inhibitors have been recently developed in order to substitute the traditional highly toxic PEG-interferon α-2b/ribavirin tandem. The contribution of our group in this field concerns the elaboration of the first and second generation GSK polymerase inhibitors through enantioselective processes based on silver(I)- and gold(I)-catalyzed 1,3-dipolar cycloadditions of azomethine ylides.
Resumo:
The disintegration under composting conditions of films based on poly(lactic acid)–poly(hydroxybutyrate) (PLA–PHB) blends and intended for food packaging was studied. Two different plasticizers, poly(ethylene glycol) (PEG) and acetyl-tri-n-butyl citrate (ATBC), were used to limit the inherent brittleness of both biopolymers. Neat PLA, plasticized PLA and PLA–PHB films were processed by melt-blending and compression molding and they were further treated under composting conditions in a laboratory-scale test at 58 ± 2 °C. Disintegration levels were evaluated by monitoring their weight loss at different times: 0, 7, 14, 21 and 28 days. Morphological changes in all formulations were followed by optical and scanning electron microscopy (SEM). The influence of plasticizers on the disintegration of PLA and PLA–PHB blends was studied by evaluating their thermal and nanomechanical properties by thermogravimetric analysis (TGA) and the nanoindentation technique, respectively. Meanwhile, structural changes were followed by Fourier transformed infrared spectroscopy (FTIR). The ability of PHB to act as nucleating agent in PLA–PHB blends slowed down the PLA disintegration, while plasticizers speeded it up. The relationship between the mesolactide to lactide forms of PLA was calculated with a Pyrolysis–Gas Chromatography–Mass Spectrometry device (Py–GC/MS), revealing that the mesolactide form increased during composting.
Resumo:
Poly(lactic acid) PLA, and poly(hydroxybutyrate) PHB, blends were processed as films and characterized for their use in food packaging. PLA was blended with PHB to enhance the crystallinity. Therefore, PHB addition strongly increased oxygen barrier while decreased the wettability. Two different environmentally-friendly plasticizers, poly(ethylene glycol) (PEG) and acetyl(tributyl citrate) (ATBC), were added to these blends to increase their processing performance, while improving their ductile properties. ATBC showed higher plasticizer efficiency than PEG directly related to the similarity solubility parameters between ATBC and both biopolymers. Moreover, ATBC was more efficiently retained to the polymer matrix during processing than PEG. PLA–PHB–ATBC blends were homogeneous and transparent blends that showed promising performance for the preparation of films by a ready industrial process technology for food packaging applications, showing slightly amber color, improved elongation at break, enhanced oxygen barrier and decreased wettability.
Resumo:
Azomethine ylides, generated from imine-derived O-cinnamyl or O-crotonyl salicylaldeyde and α-amino acids, undergo intramolecular 1,3-dipolar cycloaddition, leading to chromene[4,3-b]pyrrolidines. Two reaction conditions are used: (a) microwave-assisted heating (200 W, 185 °C) of a neat mixture of reagents, and (b) conventional heating (170 °C) in PEG-400 as solvent. In both cases, a mixture of two epimers at the α-position of the nitrogen atom in the pyrrolidine nucleus was formed through the less energetic endo-approach (B/C ring fusion). In many cases, the formation of the stereoisomer bearing a trans-arrangement into the B/C ring fusion was observed in high proportions. Comprehensive computational and kinetic simulation studies are detailed. An analysis of the stability of transient 1,3-dipoles, followed by an assessment of the intramolecular pathways and kinetics are also reported.