933 resultados para STOKES-RAMAN SCATTERING


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ∼22-km-long optical fiber. Twenty-two lasing lines with spacing of ∼100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power. © 2011 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating (FBG) reflectors and distributed feedback via Rayleigh scattering in a ∼22 km long optical fiber. Twenty two lasing lines with spacing of ∼100 GHz (close to ITU grid) in C-band are generated at Watts power level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution which is almost independent on power. The current set up showing the capability of generating Raman gain of about 100-nm wide giving the possibility of multiwavelength generation at different bands. © 2011 SPIE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have demonstrated that a random distributed feedback based on the Rayleigh scattering provides very flat power-versus-wavelength characteristics both in tunable and multiwavelength ultra-long fibre lasers. © 2011 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate lasing based on a random distributed feedback due to the Raman amplified Rayleigh backscattering in different types of cavities with and without conventional point-action reflectors. Quasistationary generation of a narrowband spectrum is achieved despite the random nature of the feedback. The generated spectrum is localized at the reflection or gain spectral maxima in schemes with and without point reflectors, respectively. The length limit for a conventional cavity and the minimal pump power required for the lasing based purely on a random distributed feedback are determined. © 2010 The American Physical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We experimentally demonstrate a Raman fiber laser with linear cavity based on point-action fibre Bragg grating reflectors and random distributed feedback via Rayleigh scattering in the long fibre providing stable multiple wavelengths (close to ITU grid) output at Watts level. ©2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman spectra were recorded in the range 400–1800 cm−1 for a series of 15 mixed \[tetrakis(4-tert-butylphenyl)porphyrinato](2,3-naphthalocyaninato) rare earth double-deckers M(TBPP)(Nc) (M = Y; La–Lu except Pm) using laser excitation at 632.8 and 785 nm. Comparisons with bis(naphthalocyaninato) rare earth counterparts reveal that the vibrations of the metallonaphthalocyanine M(Nc) fragment dominate the Raman features of M(TBPP)(Nc). When excited with radiation of 632.8 nm, the most intense vibration appears at about 1595 cm−1, due to the naphthalene stretching. These complexes exhibit the marker Raman band for Nc•− as a medium-intense band in the range 1496–1507 cm−1, attributed to the coupling of pyrrole and aza stretching, while the marker Raman band of Nc2− in intermediate-valence Ce(TBPP)(Nc) appears as a strong band at 1493 cm−1 and is due to the isoindole stretchings. By contrast, when excited with radiation of 785 nm that is in close resonance with the main Q absorption band of the naphthalocyanine ligand, the ring radial vibrations at ca 680 and 735 cm−1 for MIII(TBPP)(Nc) are selectively intensified and are the most intense bands. For the cerium double-decker, the most intense vibration also acting as the marker Raman band of Nc2− appears at 1497 cm−1 with contributions from both pyrrole CC and aza CN stretches. The same vibrational modes show weak to medium intensity scattering at 1506–1509 cm−1 for MIII(TBPP)(Nc) and this is the marker Raman band of Nc•− when thus excited. The scatterings due to the Nc breathings, ring radial vibration, aza group stretchings, naphthalene stretchings, benzoisoindole stretchings and the coupling of pyrrole CC and aza CN stretchings in MIII(TBPP)(Nc) are all slightly blue shifted along with the decrease in rare earth ionic radius, confirming the effects of increased ring–ring interactions on the Raman characteristics of naphthalocyanine in the mixed ring double-deckers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for non-invasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than one minute. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers and customs checkpoints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep Raman Spectroscopy is a domain within Raman spectroscopy consisting of techniques that facilitate the depth profiling of diffusely scattering media. Such variants include Time-Resolved Raman Spectroscopy (TRRS) and Spatially-Offset Raman Spectroscopy (SORS). A recent study has also demonstrated the integration of TRRS and SORS in the development of Time-Resolved Spatially-Offset Raman Spectroscopy (TR-SORS). This research demonstrates the application of specific deep Raman spectroscopic techniques to concealed samples commonly encountered in forensic and homeland security at various working distances. Additionally, the concepts behind these techniques are discussed at depth and prospective improvements to the individual techniques are investigated. Qualitative and quantitative analysis of samples based on spectral data acquired from SORS is performed with the aid of multivariate statistical techniques. By the end of this study, an objective comparison is made among the techniques within Deep Raman Spectroscopy based on their capabilities. The efficiency and quality of these techniques are determined based on the results procured which facilitates the understanding of the degree of selectivity for the deeper layer exhibited by the individual techniques relative to each other. TR-SORS was shown to exhibit an enhanced selectivity for the deeper layer relative to TRRS and SORS whilst providing spectral results with good signal-to-noise ratio. Conclusive results indicate that TR-SORS is a prospective deep Raman technique that offers higher selectivity towards deep layers and therefore enhances the non-invasive analysis of concealed substances from close range as well as standoff distances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the carbonate mineral kamphaugite-(Y)(CaY(CO3)2(OH)·H2O), a mineral which contains yttrium and specific rare earth elements. Chemical analysis shows the presence of Ca, Y and C. Back scattering SEM appears to indicate a single pure phase. The vibrational spectroscopy of kamphaugite-(Y) was obtained using a combination of Raman and infrared spectroscopy. Two distinct Raman bands observed at 1078 and 1088cm(-1) provide evidence for the non-equivalence of the carbonate anion in the kamphaugite-(Y) structure. Such a concept is supported by the number of bands assigned to the carbonate antisymmetric stretching mode. Multiple bands in the ν4 region offers further support for the non-equivalence of carbonate anions in the structure. Vibrational spectroscopy enables aspects of the structure of the mineral kamphaugite-(Y) to be assessed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the earlier experimental studies on light scattering in quartz near its phase transition, which ultimately laid the foundation for the basic concept of the soft mode. The theoretical work on the subject has been briefly referred to. A list of ferroelectrics in which soft mode studies have been carried out near TC using laser Raman spectroscopy is appended. Reference has also been made to the appearance of the central mode with abnormal increase in intensity at TC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

neral expressions have been derived for the intensities of the three classes of Raman lines namely totally symmetric A, doubly degenerate E and triply degenerate F, in the case of cubic crystals under the following conditions. The direction of the incident beam which is polarised with its electric vector inclined at an angle α to the normal to the scattering plane makes an angle Θ with one of the cubic axes of the crystal. The transversely scattered light is analysed by a double image prism with its principal axes inclined at angle β to the normal to the scattering plane, which is horizontal. For incident unpolarised light and Θ=22 1/2°, and the scattered light being analysed by a double image prism rotated through 45° from the position when its principal axes are vertical and horizontal ρ{variant} for A lines is equal to one, for E lines >1 and for F lines <1. This gives a method of classifying the Raman lines of a cubic crystal in a single setting. The results have been experimentally verified in sodium chlorate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inelastic light scattering studies on a single crystal of electron-doped Ca(Fe0.95Co0.05)(2)As-2 superconductor, covering the tetragonal-to-orthorhombic structural transition as well as the magnetic transition at T-SM similar to 140 K and the superconducting transition temperature T-c similar to 23 K, reveal evidence for superconductivity-induced phonon renormalization. In particular, the phonon mode near 260 cm(-1) shows hardening below T-c, signaling its coupling with the superconducting gap. All three Raman active phonon modes show anomalous temperature dependence between room temperature and T-c, i.e. the phonon frequency decreases with lowering temperature. Further, the frequency of one of the modes shows a sudden change in temperature dependence at TSM. Using first-principles density functional theory based calculations, we show that the low temperature phase (T-c < T < T-SM) exhibits short-ranged stripe antiferromagnetic ordering, and estimate the spin-phonon couplings that are responsible for these phonon anomalies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stimulated optical signals obtained by subjecting the system to a narrow band and a broadband pulse show both gain and loss Raman features at the red and blue side of the narrow beam, respectively. Recently observed temperature-dependent asymmetry in these features Mallick et al., J. Raman Spectrosc. 42, 1883 (2011); Dang et al., Phys. Rev. Lett. 107, 043001 (2011)] has been attributed to the Stokes and anti-Stokes components of the third-order susceptibility, chi((3)). By treating the setup as a steady state of an open system coupled to four quantum radiation field modes, we show that Stokes and anti-Stokes processes contribute to both the loss and gain resonances. chi((3)) predicts loss and gain signals with equal intensity for electronically off-resonant excitation. Some asymmetry may exist for resonant excitation. However, this is unrelated to the Stokes vs anti-Stokes processes. Any observed temperature-dependent asymmetry must thus originate from effects lying outside the chi((3)) regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determine the nature of coupled phonons in mixed crystal of Cs-0.9(NH4)(0.1)H2AsO4 using inelastic light scattering studies in the temperature range of 5 K to 300 K covering a spectral range of 60-1100 cm(-1). The phase transition in this system are marked by the splitting of phonon modes, appearance of new modes and anomalies in the frequency as well as linewidth of the phonon modes near transition temperature. In particular, we observed the splitting of symmetric (v(1)) and antisymmetric (v(3)) stretching vibrations associated with AsO4 tetrahedra below transition temperature (T-c(*) similar to 110 K) attributed to the lowering of site symmetry of AsO4 in orthorhombic phase below transition temperature. In addition, the step-up (hardening) and step-down (softening) of the AsO4 bending vibrations (v(4) (S9, S11) and v(2) (S6)) below transition temperature signals the rapid development of long range ferroelectric order and proton ordering. The lowest frequency phonon (S1) mode observed at similar to 92 cm(-1) shows anomalous blue shift (similar to 12 %) from 300 K to 5 K with no sharp transition near T-c(*) unlike other observed phonon modes signaling its potential coupling with the proton tunneling mode. (C) 2013 Author(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phototaxis is a directed swimming response dependent upon the light intensity sensed by micro-organisms. Positive (negative) phototaxis denotes the motion directed towards (away from) the source of light. Using the phototaxis model of Ghorai, Panda, and Hill ''Bioconvection in a suspension of isotropically scattering phototactic algae,'' Phys. Fluids 22, 071901 (2010)], we investigate two-dimensional phototactic bioconvection in an absorbing and isotropic scattering suspension in the nonlinear regime. The suspension is confined by a rigid bottom boundary, and stress-free top and lateral boundaries. The governing equations for phototactic bioconvection consist of Navier-Stokes equations for an incompressible fluid coupled with a conservation equation for micro-organisms and the radiative transfer equation for light transport. The governing system is solved efficiently using a semi-implicit second-order accurate conservative finite-difference method. The radiative transfer equation is solved by the finite volume method using a suitable step scheme. The resulting bioconvective patterns differ qualitatively from those found by Ghorai and Hill ''Penetrative phototactic bioconvection,'' Phys. Fluids 17, 074101 (2005)] at a higher critical wavelength due to the effects of scattering. The solutions show transition from steady state to periodic oscillations as the governing parameters are varied. Also, we notice the accumulation of micro-organisms in two horizontal layers at two different depths via their mean swimming orientation profile for some governing parameters at a higher scattering albedo. (C) 2013 AIP Publishing LLC.