994 resultados para SREBP-1c


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das ADAM10-Gen kodiert für eine membrangebundene Disintegrin-Metalloproteinase, die das Amyloidvorläuferprotein spaltet. Im Mausmodell konnte bewiesen werden, dass die Überexpression von ADAM10 die Plaquebildung vermindern und das Langzeitgedächtnis verbessert. Aus diesem Grund ist es für einen möglichen Therapieansatz für die Alzheimer’sche Erkrankung erforderlich, die Organisation des humanen ADAM10-Gens und seines Promotors aufzuklären. Beim Vergleich der genomischen Sequenzen von humanem und murinem ADAM10 zeigte sich eine hohe Übereinstimmung. Beide Gene umfassen 160 kbp und bestehen aus 16 Exons. Die ersten 500 bp stromaufwärts vom Translationsstartpunkt zwischen dem Menschen, der Maus und der Ratte sind hoch konserviert. Diese Region beinhaltet spezifische regulatorische Elemente, die die ADAM10-Transkription modulieren. In den ersten 2179 bp stromaufwärts vom humanen ADAM10-Translationsstartpunkt fanden sich einige potentiellen Transkriptionsfaktor-bindungsstellen (Brn-2, SREBP, Oct-1, Creb1/cJun, USF, Maz, MZF-1, NFkB und CDPCR3HD). Es wurde eine charakteristische GC-Box und eine CAAT-Box, aber keine TATA-Box identifiziert. Nach Klonierung dieser 2179 bp großen Region wurde eine starke Promotoraktivität, insbesondere in neuronalen Zelllinien, gefunden. Bei der Analyse von Deletionskonstrukten wurde die Region zwischen -508 und -300 als essentiell für die Transkriptionsaktivierung bestimmt. Die Promotoraktivität wird zudem streng herunterreguliert, wenn in die Region 317 bp stromaufwärts vom Startpunkt der Translation eine Punktmutation eingeführt wird. Diese per Computeranalyse als USF-Bindungsstelle deklarierte Region spielt eine zentrale Rolle bei der ADAM10-Transkription. Im EMSA wurde eine Protein-DNA-Interaktion für diese Region gezeigt. Durch transienten Transfektionen in Schneider Drosophila Insektenzellen konnte nachgewiesen werden, dass die Überexpression von Sp1 und USp3 für die ADAM10-Promotoraktivität entscheidend ist. In EMSA-Studien bestätigte sich eine Protein-DNA-Interaktion für die Region -366 bp stromaufwärts vom Translationsstartpunkt. Die Punktmutation in der CAAT-Box veränderte die die Promotoraktivität nicht. Da weiterhin für diese potentielle Bindungsstelle kein Bindungsfaktor vorausgesagt wurde, scheint die CAAT-Box keine Bedeutung bei der Promotorregulation zu spielen. Schließlich fand sich im EMSA eine Protein-DNA-Interaktion für die Bindungsstelle 203 bp stromaufwärts vom Translationsstartpunkt. Diese in Computeranalysen als RXR-Bindungsstelle identifizierte Region ist ebenfalls von Bedeutung in der Promotorregulation. Auf der Suche nach Substanzen, die die ADAM10-Promotoraktivität beeinflussen, wurde ein negativer Effekt durch die apoptoseauslösende Substanz Camptothecin und ein positiver Effekt durch die zelldifferenzierungsauslösende Substanz all-trans Retinsäure festgestellt. Mit dieser Arbeit wurde die genomische Organisation des ADAM10-Gens zusammen mit dem zugehörigen Promotor aufgeklärt und ein neuer Regulationsmechanismus für die Hochregulation der Expression der alpha-Sekretase ADAM10 gefunden. Im Weiteren sollen nun die genauen Mechanismen bei der Hochregulation der alpha-Sekretase ADAM10 durch Retinsäure untersucht und durch Mikroarray-Analysen an RNA-Proben transgener Mäuse, welche ADAM10 überexpremieren, neue therapeutische Ansätze zur Behandlung der Alzheimer´schen Erkrankung identifiziert werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research performed in the framework of this Master Thesis has been directly inspired by the recent work of an organometallic research group led by Professor Maria Cristina Cassani on a topic related to the structures, dynamics and catalytic activity of N-heterocyclic carbene-amide rhodium(I) complexes1. A series of [BocNHCH2CH2ImR]X (R = Me, X = I, 1a’; R = Bz, X = Br, 1b’; R = trityl, X = Cl, 1c’) amide-functionalized imidazolium salts bearing increasingly bulky N-alkyl substituents were synthetized and characterized. Subsequently, these organic precursors were employed in the synthesis of silver(I) complexes as intermediate compounds on a way to rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl, R = Me (3a’), R = Bz (3b’), R = trityl (3c’); X = I, R = Me (4a’)). VT NMR studies of these complexes revealed a restricted rotation barriers about the metal-carbene bond. However, while the rotation barriers calculated for the complexes in which R = Me, Bz (3a’,b’ and 4a) matched the experimental values, this was not true in the trityl case 3c’, where the experimental value was very similar to that obtained for compound 3b’ and much smaller with respect to the calculated one. In addition, the energy barrier derived for 3c’ from line shape simulation showed a strong dependence on the temperature, while the barriers measured for 3a’,b’ did not show this effect. In view of these results and in order to establish the reasons for the previously found inconsistency between calculated and experimental thermodynamic data, the first objective of this master thesis was the preparation of a series of rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-benzyl-3-R-imidazolin-2-ylidene; X = Cl, R = Me, Bz, trityl, tBu), containing the benzyl substituent as a chiral probe, followed by full characterization. The second objective of this work was to investigate the catalytic activity of the new rhodium compounds in the hydrosilylation of terminal alkynes for comparison purposes with the reported complexes. Another purpose of this work was to employ the prepared N-heterocyclic ligands in the synthesis of iron(II)-NHC complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Der geschwindigkeitsbestimmende Schritt bei der Biosynthese von Steroidhormonen ist der Transport von Cholesterin von der äußeren zur inneren Mitochondrienmembran, wo es zu dem Steroid Pregnenolon umgewandelt wird. Für diesen Transport ist das StAR-Protein (Steroidogenic Acute Regulatory Protein) notwendig. Ein weiteres an der Bildung von Steroidhormonen beteiligtes Protein ist das MLN64-Protein. Beide Proteine besitzen so genannte START-Domänen (StAR related Lipid Transfer-Domänen), die Cholesterin binden können. In dieser Arbeit konnte gezeigt werden, dass die START-Domänen von StAR und MLN64 Cholesterin auf unterschiedliche Weise binden. Es ist noch nicht geklärt, auf welche Weise das StAR-Protein den Cholesterintransport in die Mitochondrien bewirkt. Das StAR-Protein könnte Cholesterin binden und als Cholesterintransporter zwischen äußerer und innerer Mitochondrienmembran fungieren. Nach einer anderen Hypothese wirkt das StAR-Protein ausschließlich an der äußeren Mitochondrienmembran. Es wird auch postuliert, dass das StAR-Protein in einem teilweise entfalteten Zustand vorliegen muss, um seine Funktion erfüllen zu können. In dieser Arbeit konnte gezeigt werden, dass StAR ein fotoreaktives Cholesterinderivat bindet. Die Cholesterinbindungsstelle des StAR-Proteins konnte eingegrenzt werden. Es wurden Experimente durchgeführt, um zu überprüfen, ob das Protein tatsächlich nur in teilweise entfaltetem Zustand aktiv ist. Die Cholesterinbindung des MLN64-Proteins wurde ebenfalls mit dem fotoreaktiven Cholesterinderivat untersucht. Dabei zeigte sich, dass MLN64 offenbar mehrere Bindungsstellen für Cholesterin besitzt. Weitere Experimente beschäftigten sich mit der Charakterisierung der Cholesterinbindungsstelle des humanen Oxytocinrezeptors, eines G-Protein gekoppelten Hormonrezeptors, der durch Cholesterin reguliert wird. Dabei kam auch wieder das fotoreaktive Cholesterinderivat zum Einsatz. Außerdem wurden in dieser Arbeit Experimente durchgeführt, die sich mit der Regulation der Cholesterinbiosynthese befassten. Die Biosynthese des Cholesterins wird reguliert, indem in der Membran des Endoplasmatischen Retikulums verankerte Transkriptionsfaktoren proteolytisch freigesetzt werden. Das passiert nur dann, wenn der zelluläre Cholesterinspiegel niedrig ist. Bei diesem Regulationsmechanismus spielt das Protein SCAP eine zentrale Rolle (Sterol responsive element binding protein Cleavage Activating Protein). SCAP bindet Cholesterin spezifisch und wird dadurch reguliert. Im Rahmen dieser Arbeit konnte der Bereich von SCAP eingegrenzt werden, der Cholesterin bindet. Ebenso konnte gezeigt werden, dass die Interaktion von SCAP mit einem anderen, als Insig bezeichneten Protein indirekt durch das Cholesterinderivat 25-Hydroxycholesterin reguliert wird.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of imidazolium salts of the type [BocNHCH2CH2ImR]X (Boc = t-Bu carbamates; Im = imidazole) (R = Me, X = I, 1a; R = Bn, X = Br, 1b; R = Trityl, X = Cl, 1c) and [BnImR’]X (R’ = Me, X = Br, 1d; R’ = Bn, X = Br, 1e; R’ = Trityl, X = Cl, 1g; R’ = tBu, X = Br, 1h) bearing increasingly bulky substituents were synthetized and characterized. Subsequently, these precursors were employed in the synthesis of silver(I)-N-heterocyclic (NHC) complexes as transmetallating reagents for the preparation of rhodium(I) complexes [RhX(NBD)(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl; R = Me, 4a; R = Bn, 4b; R = Trityl, 4c; X = I, R = Me, 5a; NHC = 1-Bn-3-R’-imidazolin-2-ylidene; X = Cl; R’ = Me, 4d, R’ = Bn, 4e, R’ = Trityl, 4g; R’ = tBu, 4h). VT NMR studies of these complexes revealed a restricted rotation barriers about the metal-carbene bond. While the rotation barriers calculated for the complexes in which R = Me, Bn (4a,b,d,e and 5a) matched the experimental values, this was not true for the complexes 4c,g, bearing a trityl group for which the values are much smaller than the calculated ones. Energy barriers for 4c,g, derived from a line shape simulation, showed a strong dependence on the temperature while for 4h the rotational energy barrier is stopped at room temperature. The catalytic activity of the new rhodium compounds was investigated in the hydrosilylation of terminal alkynes and in the addition of phenylboronic acid to benzaldehyde. The imidazolium salts 1d,e were also employed in the synthesis of new iron(II)-NHC complexes. Finally, during a six-months stay at the University of York a new ligand derived from Norharman was prepared and employed in palladium-mediated cross-coupling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance of cancer cells towards chemotherapy is the major cause of therapy failure. Hence, the evaluation of cellular defense mechanisms is essential in the establishment of new chemotherapeutics. In this study, classical intrinsic and acquired as well as new resistance mechanisms relevant in the cellular response to the novel vacuolar H+-ATPase inhibitor archazolid B were investigated. Archazolid B, originally produced by the myxobacterium Archangium gephyra, displayed cytotoxicity in the low nanomolar range on a panel of cancer cell lines. The drug showed enhanced cytotoxic activity against nearly all cancerous cells compared to their non-cancerous pendants. With regards to ABC transporters, archazolid B was identified as a moderate substrate of ABCB1 (P-glycoprotein) and a weak substrate of ABCG2 (BCRP), whereas hypersensitivity was observed in ABCB5-expressing cells. The cytotoxic effect of archazolid B was shown to be independent of the cellular p53 status. However, cells expressing constitutively active EGFR displayed significantly increased resistance. Acquired drug resistance was studied by establishing an archazolid B-resistant MCF-7 cell line. Experiments showed that this secondary resistance was not conferred by aberrant expression or DNA mutations of the gene encoding vacuolar H+-ATPase subunit c, the direct target of archazolid B. Instead, a slight increase of ABCB1 and a significant overexpression of EGFR as well as reduced proliferation may contribute to acquired archazolid B resistance. For identification of new resistance strategies upon archazolid B treatment, omics data from bladder cancer and glioblastoma cells were analyzed, revealing drastic disturbances in cholesterol homeostasis, affecting cholesterol biosynthesis, uptake and transport. As shown by filipin staining, archazolid B led to accumulation of free cholesterol in lysosomes, which triggered sterol responses, mediated by SREBP-2 and LXR, including up-regulation of HMGCR, the key enzyme of cholesterol biosynthesis. Furthermore, inhibition of LDL uptake as well as impaired LDLR surface expression were observed, indicating newly synthesized cholesterol to be the main source of cholesterol in archazolid B-treated cells. This was proven by the fact that under archazolid B treatment, total free cholesterol levels as well as cell survival were significantly reduced by inhibiting HMGCR with fluvastatin. The combination of archazolid B with statins may therefore be an attractive strategy to circumvent cholesterol-mediated cell survival and in turn potentiate the promising anticancer effects of archazolid B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Satellite image classification involves designing and developing efficient image classifiers. With satellite image data and image analysis methods multiplying rapidly, selecting the right mix of data sources and data analysis approaches has become critical to the generation of quality land-use maps. In this study, a new postprocessing information fusion algorithm for the extraction and representation of land-use information based on high-resolution satellite imagery is presented. This approach can produce land-use maps with sharp interregional boundaries and homogeneous regions. The proposed approach is conducted in five steps. First, a GIS layer - ATKIS data - was used to generate two coarse homogeneous regions, i.e. urban and rural areas. Second, a thematic (class) map was generated by use of a hybrid spectral classifier combining Gaussian Maximum Likelihood algorithm (GML) and ISODATA classifier. Third, a probabilistic relaxation algorithm was performed on the thematic map, resulting in a smoothed thematic map. Fourth, edge detection and edge thinning techniques were used to generate a contour map with pixel-width interclass boundaries. Fifth, the contour map was superimposed on the thematic map by use of a region-growing algorithm with the contour map and the smoothed thematic map as two constraints. For the operation of the proposed method, a software package is developed using programming language C. This software package comprises the GML algorithm, a probabilistic relaxation algorithm, TBL edge detector, an edge thresholding algorithm, a fast parallel thinning algorithm, and a region-growing information fusion algorithm. The county of Landau of the State Rheinland-Pfalz, Germany was selected as a test site. The high-resolution IRS-1C imagery was used as the principal input data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinical trials have reported statistically significant and clinically relevant effects of homeopathic preparations. We applied ultraviolet (UV) spectroscopy to investigate the physical properties of homeopathic preparations and to contribute to an understanding of the not-yet-identified mode of action. In previous investigations, homeopathic preparations had significantly lower UV light transmissions than controls. The aim of this study was to explore the possible effects of external factors (UV light and temperature) on the homeopathic preparations. Homeopathic centesimal (c) dilutions, 1c to 30c, of copper sulfate (CuSO(4)), decimal dilutions of sulfur (S(8)), 1x to 30x, and controls (succussed potentization medium) were prepared, randomized, and blinded. UV transmission was measured at six different time points after preparation (from 4 to 256 days). In addition, one series of samples was exposed to UV light of a sterilization lamp for 12 h, one was incubated at 37 degrees Celsius for 24 h, and one was heated to 90 degrees Celsius for 15 min. UV light transmission values from 190 or 220 nm to 340 nm were measured several times and averaged. After each exposure, UV transmission of the homeopathic preparations of CuSO(4) was significantly reduced compared to the controls, particularly after heating to 37 degrees Celsius. Overall, the nonexposed CuSO(4) preparations did not show significantly lower UV transmission compared to controls; however, the pooled subgroup of measurements at days 26, 33, and 110 yielded significant differences. UV light transmission for S(8) preparations did not show any differences compared to controls. Our conclusion is that exposure to external factors, incubation at 37 degrees Celsius in particular, increases the difference in light transmission of homeopathic CuSO(4) preparations compared to controls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipids are important for cell function and survival, but abnormal concentrations may lead to various diseases. Cholesterol homeostasis is greatly dependent on the active transport by membrane proteins, whose activities coordinate lipid status with cellular function. Intestinal Niemann-Pick C1-Like 1 protein (NPC1L1) and scavenger receptor B1 (SR-B1) participate in the uptake of extracellular cholesterol, whereas ATP binding cassette A1 (ABCA1) mediates the efflux of excessive intracellular cholesterol. Caveolin-1 binds cholesterol and fatty acids (FA) and participates in cholesterol trafficking. Sterol response element binding protein-2 (SREBP-2) is a sensor that regulates intracellular cholesterol synthesis. Given that cholesterol is a constituent of chylomicrons, whose synthesis is enhanced with an increased FA supply, we tested the hypothesis that feeding polyunsaturated FA (PUFA)-enriched diets in treatment of canine chronic enteropathies alters the mRNA expression of genes involved in cholesterol homeostasis. Using quantitative reverse transcriptase polymerase chain reaction (RT-PCR), we compared the mRNA abundance of NPC1L1, SR-B1, ABCA1, caveolin-1, and SREBP-2 in duodenal mucosal biopsies of dogs with food-responsive diarrhea (FRD; n=14) and inflammatory bowel disease (IBD; n=7) before and after treatment with cholesterol-free PUFA-enriched diets and in healthy controls (n=14). The abundance of caveolin-1, ABCA1, and SREBP-2 were altered by PUFA-enriched diets (P<0.05), whereas that of NPC1L1 and SR-B1 mRNA remained unchanged. The gene expression of caveolin-1, ABCA1, and SREBP-2 was down-regulated (P<0.05) by PUFA-enriched diets in IBD dogs only. Our results suggest that feeding PUFA-enriched diets may alter cholesterol homeostasis in duodenal mucosal cells of dogs suffering from IBD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity. Conclusions Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Retinol-binding protein 4 (RBP4) has recently been reported to be associated with insulin resistance and the metabolic syndrome. This study tested the hypothesis that RBP4 is a marker of insulin resistance and the metabolic syndrome in patients with type 2 diabetes or coronary artery disease (CAD) or in non-diabetic control subjects without CAD. METHODS: Serum RBP4 was measured in 365 men (126 with type 2 diabetes, 143 with CAD and 96 control subjects) and correlated with the homeostasis model assessment of insulin resistance index (HOMA-IR), components of the metabolic syndrome and lipoprotein metabolism. RBP4 was detected by ELISA and validated by quantitative Western blotting. RESULTS: RBP4 concentrations detected by ELISA were shown to be strongly associated with the results gained in quantitative Western blots. There were no associations of RBP4 with HOMA-IR or HbA(1c) in any of the groups studied. In patients with type 2 diabetes there were significant positive correlations of RBP4 with total cholesterol, LDL-cholesterol, VLDL-cholesterol, plasma triacylglycerol and hepatic lipase activity. In patients with CAD, there were significant associations of RBP4 with VLDL-cholesterol, plasma triacylglycerol and hepatic lipase activity, while non-diabetic control subjects without CAD showed positive correlations of RBP4 with VLDL-cholesterol and plasma triacylglycerol. CONCLUSIONS/INTERPRETATION: RBP4 does not seem to be a valuable marker for identification of the metabolic syndrome or insulin resistance in male patients with type 2 diabetes or CAD. Independent associations of RBP4 with pro-atherogenic lipoproteins and enzymes of lipoprotein metabolism indicate a possible role of RBP4 in lipid metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: To assess the use of paediatric continuous subcutaneous infusion (CSII) under real-life conditions by analysing data recorded for up to 90 days and relating them to outcome. METHODS: Pump programming data from patients aged 0-18 years treated with CSII in 30 centres from 16 European countries and Israel were recorded during routine clinical visits. HbA(1c) was measured centrally. RESULTS: A total of 1,041 patients (age: 11.8 +/- 4.2 years; diabetes duration: 6.0 +/- 3.6 years; average CSII duration: 2.0 +/- 1.3 years; HbA(1c): 8.0 +/- 1.3% [means +/- SD]) participated. Glycaemic control was better in preschool (n = 142; 7.5 +/- 0.9%) and pre-adolescent (6-11 years, n = 321; 7.7 +/- 1.0%) children than in adolescent patients (12-18 years, n = 578; 8.3 +/- 1.4%). There was a significant negative correlation between HbA(1c) and daily bolus number, but not between HbA(1c) and total daily insulin dose. The use of <6.7 daily boluses was a significant predictor of an HbA(1c) level >7.5%. The incidence of severe hypoglycaemia and ketoacidosis was 6.63 and 6.26 events per 100 patient-years, respectively. CONCLUSIONS/INTERPRETATION: This large paediatric survey of CSII shows that glycaemic targets can be frequently achieved, particularly in young children, and the incidence of acute complications is low. Adequate substitution of basal and prandial insulin is associated with a better HbA(1c).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental work and analysis was done to investigate engine startup robustness and emissions of a flex-fuel spark ignition (SI) direct injection (DI) engine. The vaporization and other characteristics of ethanol fuel blends present a challenge at engine startup. Strategies to reduce the enrichment requirements for the first engine startup cycle and emissions for the second and third fired cycle at 25°C ± 1°C engine and intake air temperature were investigated. Research work was conducted on a single cylinder SIDI engine with gasoline and E85 fuels, to study the effect on first fired cycle of engine startup. Piston configurations that included a compression ratio change (11 vs 15.5) and piston geometry change (flattop vs bowl) were tested, along with changes in intake cam timing (95,110,125) and fuel pressure (0.4 MPa vs 3 MPa). The goal was to replicate the engine speed, manifold pressure, fuel pressure and testing temperature from an engine startup trace for investigating the first fired cycle for the engine. Results showed bowl piston was able to enable lower equivalence ratio engine starts with gasoline fuel, while also showing lower IMEP at the same equivalence ratio compared to flat top piston. With E85, bowl piston showed reduced IMEP as compression ratio increased at the same equivalence ratio. A preference for constant intake valve timing across fuels seemed to indicate that flattop piston might be a good flex-fuel piston. Significant improvements were seen with higher CR bowl piston with high fuel pressure starts, but showed no improvement with low fuel pressures. Simulation work was conducted to analyze initial three cycles of engine startup in GT-POWER for the same set of hardware used in the experimentations. A steady state validated model was modified for startup conditions. The results of which allowed an understanding of the relative residual levels and IMEP at the test points in the cam phasing space. This allowed selecting additional test points that enable use of higher residual levels, eliminating those with smaller trapped mass incapable of producing required IMEP for proper engine turnover. The second phase of experimental testing results for 2nd and 3rd startup cycle revealed both E10 and E85 prefer the same SOI of 240°bTDC at second and third startup cycle for the flat top piston and high injection pressures. E85 fuel optimal cam timing for startup showed that it tolerates more residuals compared to E10 fuel. Higher internal residuals drives down the Ø requirement for both fuels up to their combustion stability limit, this is thought to be direct benefit to vaporization due to increased cycle start temperature. Benefits are shown for an advance IMOP and retarded EMOP strategy at engine startup. Overall the amount of residuals preferred by an engine for E10 fuel at startup is thought to be constant across engine speed, thus could enable easier selection of optimized cam positions across the startup speeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although low-density lipoprotein (LDL) cholesterol is often normal in patients with type 2 diabetes mellitus, there is evidence for a reduced fractional catabolic rate and consequently an increased mean residence time (MRT), which can increase atherogenic risk. The dyslipidemia and insulin resistance of type 2 diabetes mellitus can be improved by aerobic exercise, but effects on LDL kinetics are unknown. The effect of 6-month supervised exercise on LDL apolipoprotein B kinetics was studied in a group of 17 patients with type 2 diabetes mellitus (mean age, 56.8 years; range, 38-68 years). Patients were randomized into a supervised group, who had a weekly training session, and an unsupervised group. LDL kinetics were measured with an infusion of 1-(13)C leucine at baseline in all groups and after 6 months of exercise in the patients. Eight body mass index-matched nondiabetic controls (mean age, 50.3 years; range, 40-67 years) were also studied at baseline only. At baseline, LDL MRT was significantly longer in the diabetic patients, whereas LDL production rate and fractional clearance rates were significantly lower than in controls. Percentage of glycated hemoglobin A(1c), body mass index, insulin sensitivity measured by the homeostasis model assessment, and very low-density lipoprotein triglyceride decreased (P < .02) in the supervised group, with no change in the unsupervised group. After 6 months, LDL cholesterol did not change in either the supervised or unsupervised group; but there was a significant change in LDL MRT between groups (P < .05) that correlated positively with very low-density lipoprotein triglyceride (r = 0.51, P < .04) and negatively with maximal oxygen uptake, a measure of fitness (r = -0.51, P = .035), in all patients. The LDL production and clearance rates did not change in either group. This study suggests that a supervised exercise program can reduce deleterious changes in LDL MRT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both the biology and the therapeutic potential of the phosphoinositide 3-kinase (PI3K) signalling axis have been the subject of intense investigation; however, little is known about the regulation of PI3K expression. Emerging evidence indicates that PI3K levels change in response to cellular stimulation with insulin and nuclear receptor ligands, and during various physiological and pathological processes including differentiation, regeneration, hypertension and cancer. Recently identified mechanisms that control PI3K production include increased gene copy number in cancer, and transcriptional regulation of the p110alpha PI3K gene by FOXO3a, NF-kappaB and p53, and of the PI3K regulatory subunits by STAT3, EBNA-2 and SREBP. In most instances, however, the impact of alterations in PI3K expression on PI3K signalling and disease remains to be established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic ethanol consumption is a strong risk factor for the development of certain types of cancer including those of the upper aerodigestive tract, the liver, the large intestine and the female breast. Multiple mechanisms are involved in alcohol-mediated carcinogenesis. Among those the action of acetaldehyde (AA), the first metabolite of ethanol oxidation is of particular interest. AA is toxic, mutagenic and carcinogenic in animal experiments. AA binds to DNA and forms carcinogenic adducts. Direct evidence of the role of AA in alcohol-associated carcinogenesis derived from genetic linkage studies in alcoholics. Polymorphisms or mutations of genes coding for AA generation or detoxifying enzymes resulting in elevated AA concentrations are associated with increased cancer risk. Approximately 40% of Japanese, Koreans or Chinese carry the AA dehydrogenase 2*2 (ALDH2*2) allele in its heterozygous form. This allele codes for an ALDH2 enzyme with little activity leading to high AA concentrations after the consumption of even small amounts of alcohol. When individuals with this allele consume ethanol chronically, a significant increased risk for upper alimentary tract and colorectal cancer is noted. In Caucasians, alcohol dehydrogenase 1C*1 (ADH1C*1) allele encodes for an ADH isoenzyme which produces 2.5 times more AA than the corresponding allele ADH1C*2. In studies with moderate to high alcohol intake, ADH1C*1 allele frequency and rate of homozygosity was found to be significantly associated with an increased risk for cancer of the upper aerodigestive tract, the liver, the colon and the female breast. These studies underline the important role of acetaldehyde in ethanol-mediated carcinogenesis.